Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Вписанные окружности граней SBC , SAC и SAB треугольной пирамиды SABC попарно пересекаются и имеют радиусы , и соответственно. Точка K является точкой касания окружностей со стороной SA , причём SK=3 . Найдите длину отрезка AK , периметр и радиус вписанной окружности треугольника ABC .

Вниз   Решение


Окружность S касается окружностей S1 и S2 в точках A1 и A2.
Докажите, что прямая A1A2 проходит через точку пересечения общих внешних или общих внутренних касательных к окружностям S1 и S2.

ВверхВниз   Решение


Решите задачу 5.85, а) с помощью теоремы Менелая.

ВверхВниз   Решение


а) Серединный перпендикуляр к биссектрисе AD треугольника ABC пересекает прямую BC в точке E. Докажите, что  BE : CE = c2 : b2.
б) Докажите, что точки пересечения серединных перпендикуляров к биссектрисам треугольников и продолжений соответствующих сторон лежат на одной прямой.

ВверхВниз   Решение


На прямых BC, CA и AB взяты точки A1, B1 и C1, причем точки A1, B1 и C1 лежат на одной прямой. Прямые, симметричные прямым AA1, BB1 и CC1 относительно соответствующих биссектрис треугольника ABC, пересекают прямые BC, CA и AB в точках A2, B2 и C2. Докажите, что точки A2, B2 и C2 лежат на одной прямой.

ВверхВниз   Решение


В углу шахматной доски размером n×n полей стоит ладья. При каких n, чередуя горизонтальные и вертикальные ходы, она может за n² ходов побывать на всех полях доски и вернуться на место? (Учитываются только поля, на которых ладья останавливалась, а не те, над которыми она проносилась во время хода.)

ВверхВниз   Решение


Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, ..., an с разностью 2, обладающей свойством:    – простое при всех  k = 1, 2, ..., n?

ВверхВниз   Решение


Через вершины B , C и D трапеции ABCD ( AD|| BC ) проведена окружность. Известно, что окружность касается прямой AB , а её центр лежит на диагонали BD . Найдите периметр трапеции ABCD , если BC=9 , AD=25 .

ВверхВниз   Решение


Автор: Фольклор

От Майкопа до Белореченска 24 км. Три друга должны добраться: двое из Майкопа в Белореченск, а третий – из Белореченска в Майкоп. У них есть один велосипед, первоначально находящийся в Майкопе. Каждый из друзей может идти (со скоростью не более 6 км/ч) и ехать на велосипеде (со скоростью не более 18 км/ч). Оставлять велосипед без присмотра нельзя. Докажите, что через 2 часа 40 минут все трое друзей могут оказаться в пунктах назначения. Ехать на велосипеде вдвоём нельзя.

ВверхВниз   Решение


Какое наибольшее количество клеток можно отметить на шахматной доске так, чтобы с каждой из них на любую другую отмеченную клетку можно было пройти ровно двумя ходами шахматного коня?

ВверхВниз   Решение


Через терминал оплаты на мобильный телефон можно перевести деньги, при этом взимается комиссия – натуральное число процентов. Федя положил целое количество рублей на мобильный телефон, и его счет пополнился на 847 рублей. Сколько денег положил на счет Федя, если известно, что комиссия менее 30%?

Вверх   Решение

Задачи

Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 1113]      



Задача 111917

Темы:   [ Задачи на проценты и отношения ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10

Через терминал оплаты на мобильный телефон можно перевести деньги, при этом взимается комиссия – натуральное число процентов. Федя положил целое количество рублей на мобильный телефон, и его счет пополнился на 847 рублей. Сколько денег положил на счет Федя, если известно, что комиссия менее 30%?

Прислать комментарий     Решение

Задача 115357

Темы:   [ Задачи на движение ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3+
Классы: 7,8,9

Девять лыжников ушли со старта по очереди и прошли дистанцию – каждый со своей постоянной скоростью. Могло ли оказаться, что каждый лыжник участвовал ровно в четырёх обгонах? (В каждом обгоне участвуют ровно два лыжника – тот, кто обгоняет, и тот, кого обгоняют.)

Прислать комментарий     Решение

Задача 115387

Тема:   [ Задачи на проценты и отношения ]
Сложность: 3+
Классы: 7,8,9

Петя и Вася играют на бирже. Некоторые дни удачные, и в такие дни капитал Пети увеличивается на 1000, а капитал Васи – на 10%. А остальные дни неудачные – и тогда капитал Пети уменьшается на 2000, а капитал Васи уменьшается на 20%. Через некоторое время капитал Пети оказался таким же, как был в начале. А что произошло с капиталом Васи: уменьшился он, увеличился или остался прежним?

Прислать комментарий     Решение

Задача 115445

Темы:   [ Турниры и турнирные таблицы ]
[ Подсчет двумя способами ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10,11

В футбольном турнире участвовало 20 команд (каждая сыграла с каждой из остальных по одному матчу). Могло ли в результате оказаться так, что каждая из команд-участниц выиграла столько же матчей, сколько сыграла вничью?

Прислать комментарий     Решение

Задача 115972

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Можно ли в клетках таблицы 19×19 отметить несколько клеток так, чтобы во всех квадратах 10×10 было разное количество отмеченных клеток?

Прислать комментарий     Решение

Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 1113]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .