ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Из клетчатой бумаги вырезан квадрат 17×17. В клетках квадрата произвольным образом написаны числа 1, 2, 3, ..., 70 по одному и только одному числу в каждой клетке. Доказать, что существуют такие четыре различные клетки с центрами в точках A, B, C, D, что  AB = CD,  AD = BC  и сумма чисел, стоящих в клетках с центрами в A и C, равна сумме чисел в клетках с центрами B и D.

Вниз   Решение


Петя подсчитал количество всех возможных m-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2m-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.)

ВверхВниз   Решение


Даны две пересекающиеся окружности радиуса R, причем расстояние между их центрами больше R. Докажите, что  β = 3α (рис.).


ВверхВниз   Решение


В квадратной песочнице, засыпанной ровным слоем песка высотой 1, Маша и Паша делали куличи при помощи цилиндрического ведёрка высоты 2. У Маши все куличи удались, а у Паши — рассыпались и превратились в конусы той же высоты. В итоге весь песок ушёл на куличи, поставленные на дне песочницы отдельно друг от друга. Чьих куличей оказалось в песочнице больше: Машиных или Пашиных?

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 87429

Темы:   [ Объем круглых тел ]
[ Поверхность круглых тел ]
Сложность: 3
Классы: 10,11

Найдите объём конуса, у которого площадь боковой поверхности равна 15 , а расстояние от центра основания до образующей равно .
Прислать комментарий     Решение


Задача 87452

Темы:   [ Объем круглых тел ]
[ Тела вращения ]
[ Объем тела равен сумме объемов его частей ]
Сложность: 3
Классы: 10,11

Ромб, меньшая диагональ которого равна его стороне, равной 1, вращается около прямой, проходящей через конец большей диагонали перпендикулярно этой диагонали. Найдите объём полученного тела вращения.
Прислать комментарий     Решение


Задача 115511

Темы:   [ Объем круглых тел ]
[ Площадь. Одна фигура лежит внутри другой ]
Сложность: 3
Классы: 10,11

В квадратной песочнице, засыпанной ровным слоем песка высотой 1, Маша и Паша делали куличи при помощи цилиндрического ведёрка высоты 2. У Маши все куличи удались, а у Паши — рассыпались и превратились в конусы той же высоты. В итоге весь песок ушёл на куличи, поставленные на дне песочницы отдельно друг от друга. Чьих куличей оказалось в песочнице больше: Машиных или Пашиных?
Прислать комментарий     Решение


Задача 78167

Тема:   [ Объем круглых тел ]
Сложность: 3+
Классы: 11

Стороны параллелограмма равны a и b. Найти отношение объёмов тел, полученных при вращении параллелограмма вокруг стороны a и вокруг стороны b.
Прислать комментарий     Решение


Задача 87461

Темы:   [ Тела вращения ]
[ Объем круглых тел ]
Сложность: 3
Классы: 10,11


Основания трапеции равны 8 и 2. Углы, прилежащие к большему основанию, равны по 45o. Найдите объем тела, образованного вращением трапеции вокруг большего основания.

Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .