ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В угол вписаны касающиеся внешним образом окружности радиусов r и R  (r < R).  Первая из них касается сторон угла в точках A и B. Найдите AB.

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 78]      



Задача 58341

Темы:   [ Инверсия помогает решить задачу ]
[ Касающиеся окружности ]
[ Окружность, вписанная в угол ]
Сложность: 5-
Классы: 9,10,11

Найдите множество точек касания пар окружностей, касающихся сторон данного угла в данных точках A и B.
Прислать комментарий     Решение


Задача 110781

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Окружность, вписанная в угол ]
[ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные окружности ]
[ Изогональное сопряжение ]
Сложность: 5+
Классы: 10

Прямые, содержащие медианы треугольника ABC, вторично пересекают его описанную окружность в точках A1, B1, C1. Прямые, проходящие через A, B, C и параллельные противоположным сторонам, пересекают ее же в точках A2, B2, C2. Докажите, что прямые A1A2, B1B2, C1C2 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 57522

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Окружность, вписанная в угол ]
Сложность: 3
Классы: 8,9

Докажите, что среди всех треугольников ABC с фиксированным углом $ \alpha$ и полупериметром p наибольшую площадь имеет равнобедренный треугольник с основанием BC.
Прислать комментарий     Решение


Задача 115629

Темы:   [ Касающиеся окружности ]
[ Вспомогательные подобные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
[ Окружность, вписанная в угол ]
Сложность: 3
Классы: 8,9

В угол вписаны касающиеся внешним образом окружности радиусов r и R  (r < R).  Первая из них касается сторон угла в точках A и B. Найдите AB.

Прислать комментарий     Решение

Задача 53172

Темы:   [ Вписанные и описанные окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Окружность, вписанная в угол ]
Сложность: 4-
Классы: 8,9

В треугольник ABC вписана окружность радиуса R, касающаяся стороны AC в точке D, стороны AB в точке E и стороны BC в точке F. Известно, что  AD = R,
DC = a
.  Найдите площадь треугольника BEF.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 78]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .