ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Касательные прямые и касающиеся окружности
>>
Прямые, касающиеся окружностей
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружность с центром O касается сторон угла в точках A и B. Через произвольную точку M отрезка AB, отличную от точек A и B, проведена прямая, перпендикулярная прямой OM и пересекающая стороны угла в точках C и D. Докажите, что MC = MD. Решение |
Страница: << 113 114 115 116 117 118 119 >> [Всего задач: 769]
На диагонали AC параллелограмма ABCD взята точка P так, что AP : PC = 3 : 5. Окружность с центром в точке P касается прямой BC и пересекает отрезок AD в точках K и L. Точка K лежит между точками A и L, AK = 9, KL = 3, LD = 12. Найдите периметр параллелограмма ABCD.
Точки K и L являются серединами боковых сторон AB и BC равнобедренного треугольника ABC. Точка M расположена на медиане AL так, что
Через центр O вписанной в треугольник ABC окружности проведена прямая, перпендикулярная прямой AO и пересекающая прямую BC в точке M.
Окружность, построенная как на диаметре на меньшей боковой стороне прямоугольной трапеции, касается большей боковой стороны, равной a.
Окружность с центром O касается сторон угла в точках A и B. Через произвольную точку M отрезка AB, отличную от точек A и B, проведена прямая, перпендикулярная прямой OM и пересекающая стороны угла в точках C и D. Докажите, что MC = MD.
Страница: << 113 114 115 116 117 118 119 >> [Всего задач: 769] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|