ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сторону AB треугольника ABC разделили на n равных частей (точки деления B0 = A, B1, B2, Bn = B), а сторону AC этого треугольника разделили на |
Страница: << 84 85 86 87 88 89 90 >> [Всего задач: 829]
Сторону AB треугольника ABC разделили на n равных частей (точки деления B0 = A, B1, B2, Bn = B), а сторону AC этого треугольника разделили на
Две окружности пересекаются в точках P и Q. Из точки Q пустили в каждую из окружностей по одному лучу, которые отражаются от окружностей по закону "угол падения равен углу отражения". Точки касания траектории первого луча – A1, A2, ..., второго – B1, B2, ... . Оказалось, что точки A1, B1 и P лежат на одной прямой. Докажите, что тогда все прямые AiBi проходят через точку P.
Дан треугольник ABC. Из точек A1, B1 и C1, лежащих на прямых BC, AC и AB соответственно, восставлены перпендикуляры к этим прямым.
Вневписанные окружности треугольника ABC касаются сторон BC, AC и AB в точках A1, B1
и C1 соответственно.
Дан правильный треугольник ABC и произвольная точка D. Точки A1, B1 и C1 – центры окружностей, вписанных в треугольники BCD, CAD и ABD соответственно. Докажите, что перпендикуляры, опущенные из вершин A, B и C на прямые соответственно B1C1, A1C1 и A1B1, пересекаются в одной точке.
Страница: << 84 85 86 87 88 89 90 >> [Всего задач: 829] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|