Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
  а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?
  б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?
  в) Могут ли длины отрезков равняться 4, 4 и 3?

Вниз   Решение


Игрок на компьютере управляет лисой, охотящейся за двумя зайцами. В вершине A квадрата ABCD находится нора: если в нее, в отсутствие лисы, попадает хотя бы один заяц, то игра проиграна. Лиса ловит зайца, как только оказывается с ним в одной точке (возможно, в точке A ). Вначале лиса сидит в точке C , а зайцы – в точках B и D . Лиса бегает повсюду со скоростью не больше v , а зайцы – по лучам AB и AD со скоростью не больше 1. При каких значениях v лиса сможет поймать обоих зайцев?

ВверхВниз   Решение


Натуральные числа покрашены в N цветов. Чисел каждого цвета бесконечно много. Известно, что цвет полусуммы двух различных чисел одной чётности зависит только от цветов слагаемых.
  а) Докажите, что полусумма чисел одной чётности одного цвета всегда окрашена в тот же цвет.
  б) При каких N такая раскраска возможна?

ВверхВниз   Решение


У игрока есть m золотых и n серебряных монет. В начале каждого раунда игрок ставит какие-то монеты на красное, какие-то на чёрное (можно вообще ничего не ставить на один из цветов, часть монет можно никуда не ставить). В конце каждого раунда крупье объявляет, что один из цветов выиграл. Ставку на выигравший цвет крупье отдаёт игроку, удваивая в ней количество монет каждого вида, а ставку на проигравший цвет забирает себе. Игрок хочет, чтобы монет одного вида у него стало ровно в три раза больше, чем другого (в частности, его устроит остаться совсем без денег). При каких m и n крупье не сможет ему помешать?

ВверхВниз   Решение


Покажите, что существует выпуклая фигура, ограниченная дугами окружностей, которую можно разрезать на несколько частей и из них сложить две выпуклые фигуры, ограниченные дугами окружностей.

ВверхВниз   Решение


Среди вершин любого ли многогранника можно выбрать четыре вершины тетраэдра, площадь проекции которого на любую плоскость составляет от площади проекции (на ту же плоскость) исходного многогранника: а) больше, чем , б) не меньше, чем , в) не меньше, чем ?

ВверхВниз   Решение


На сторонах треугольника ABC внешним образом построены подобные треугольники: Δ A'BC Δ B'CA Δ C'AB . Докажите, что в треугольниках ABC и A'B'C' точки пересечения медиан совпадают.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 100]      



Задача 79360

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Векторы помогают решить задачу ]
[ Наименьший или наибольший угол ]
[ Скалярное произведение. Соотношения ]
Сложность: 4
Классы: 11

Дано 8 действительных чисел: a, b, c, d, e, f, g, h. Доказать, что хотя бы одно из шести чисел  ac + bd,  ae + bf,  ag + bh,  ce + df,  cg + dh,  eg + fh  неотрицательно.

Прислать комментарий     Решение

Задача 115595

Темы:   [ Неравенства с медианами ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 8,9

Сумма расстояний между серединами противоположных сторон четырёхугольника равна его полупериметру. Докажите, что этот четырёхугольник — параллелограмм.
Прислать комментарий     Решение


Задача 115912

Темы:   [ Поворотная гомотетия ]
[ Векторы помогают решить задачу ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4
Классы: 8,9

На сторонах треугольника ABC внешним образом построены подобные треугольники: Δ A'BC Δ B'CA Δ C'AB . Докажите, что в треугольниках ABC и A'B'C' точки пересечения медиан совпадают.
Прислать комментарий     Решение


Задача 55601

 [Задача о четырех пятаках.]
Темы:   [ Пересекающиеся окружности ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 8,9

Четыре окружности радиуса R пересекаются по три в точках M и N, и по две в точках A, B, C и D. Докажите что ABCD — параллелограмм.

Прислать комментарий     Решение


Задача 57531

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Векторы помогают решить задачу ]
Сложность: 4+
Классы: 9

Докажите, что если α, β, γ и α1, β1, γ1 – углы двух треугольников, то   cos α1/sin α + cos β1/sin β + cos γ1/sin γ ≤ ctg α + ctg β + ctg γ.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .