ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найти геометрическое место центров прямоугольников, описанных около данного остроугольного треугольника. M и N — точки пересечения двух окружностей с центрами O1 и O2. Прямая O1M пересекает 1-ю окружность в точке A1, а 2-ю в точке A2. Прямая O2M пересекает 1-ю окружность в точке B1, а 2-ю в точке B2. Доказать, что прямые A1B1, A2B2 и MN пересекаются в одной точке. В десятичной записи целого числа A все цифры, кроме первой и последней, нули, первая и последняя – не нули, число цифр – не меньше трёх. Имеется m точек, некоторые из которых соединены отрезками так, что каждая соединена с l точками. Какие значения может принимать l? Даны отрезки AB, CD и точка O. Конец отрезка называется "отмеченным", если прямая, проходящая через него и точку O, не пересекает другой отрезок. Сколько может быть отмеченных концов? Сторона треугольника равна |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 60]
В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Докажите, что A1C·BC = B1C·AC.
Пусть AA1 и BB1 – высоты треугольника ABC. Докажите, что треугольники A1B1C и ABC подобны. Чему равен коэффициент подобия?
В треугольнике ABC проведены высоты BB1 и CC1. Докажите, что
AA1 и BB1 – высоты остроугольного треугольника ABC. Докажите, что:
Сторона треугольника равна
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 60]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке