Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Докажите, что при всех натуральных n выполняется сравнение [(1 + $ \sqrt{2}$)n] $ \equiv$ n(mod 2).

Вниз   Решение


а) Из произвольной точки M внутри правильного n-угольника проведены перпендикуляры  MK1, MK2, ..., MKn  к его сторонам (или их продолжениям). Докажите, что      (O – центр n-угольника).

б) Докажите, что сумма векторов, проведённых из любой точки M внутри правильного тетраэдра перпендикулярно к его граням, равна     где O – центр тетраэдра.

ВверхВниз   Решение


В пространстве имеются 30 ненулевых векторов. Доказать, что среди них найдутся два, угол между которыми меньше 45°.

ВверхВниз   Решение


Автор: Борисов Л.

Мудрецу С. сообщили сумму трёх натуральных чисел, а мудрецу П. – их произведение.
– Если бы я знал, – сказал С., – что твоё число больше, чем моё, я бы сразу назвал три искомых числа.
– Мое число меньше, чем твоё, – ответил П., – а искомые числа ..., ... и ... .
Какие числа назвал П.?

ВверхВниз   Решение


Автор: Анджанс А.

  Дан выпуклый четырёхугольник ABCD. Каждая его сторона разбита на k равных частей. Точки деления, принадлежащие стороне AB, соединены прямыми с точками деления, принадлежащими стороне CD, так что первая, считая от A, точка деления соединена с первой точкой деления, считая от D, вторая, считая от A, – со второй, считая от D, и т. д. (первая серия прямых), а точки деления, принадлежащие стороне BC, аналогичным образом соединены с точками деления, принадлежащими стороне DA (вторая серия прямых). Образовалось k² маленьких четырёхугольников. Из них выбрано k четырёхугольников таким образом, что каждые два выбранных четырёхугольника разделены хотя бы одной прямой первой серии и хотя бы одной прямой второй серии.
  Доказать, что сумма площадей выбранных четырёхугольников равна  1/k SABCD.

ВверхВниз   Решение


Автор: Ботин Д.А.

Среди четырёх людей нет трёх с одинаковым именем, или с одинаковым отчеством, или с одинаковой фамилией, но у каждых двух совпадает или имя, или отчество, или фамилия. Может ли такое быть?

ВверхВниз   Решение


Автор: Садыков Р.

Дан прямоугольник ABCD. Через точку B провели две перпендикулярные прямые. Первая прямая пересекает сторону AD в точке K, а вторая   продолжение стороны CD в точке L. Пусть F – точка пересечения KL и AC. Докажите, что  BFKL.

ВверхВниз   Решение


На продолжении наибольшей стороны AC треугольника ABC отложен отрезок |CD|=|BC| . Доказать, что ABD тупой.

ВверхВниз   Решение


Отметьте на доске 8×8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.

ВверхВниз   Решение


a) Докажите, что в любой футбольной команде есть два игрока, которые родились в один и тот же день недели.
b) Докажите, что среди жителей Москвы найдутся десять тысяч, празднующих день рождения в один и тот же день.

ВверхВниз   Решение


Пусть при инверсии относительно окружности с центром O точка A переходит в точку A' , а точка B — в B' . Докажите, что треугольники AOB и B'OA' подобны.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 58318

Темы:   [ Свойства инверсии ]
[ Признаки подобия ]
Сложность: 3
Классы: 9,10

Пусть при инверсии с центром O точка A переходит в A', а точка B – в B'. Докажите, что треугольники OAB и OB'A' подобны.

Прислать комментарий     Решение

Задача 61186

Темы:   [ Свойства инверсии ]
[ Геометрия комплексной плоскости ]
[ Дробно-линейные преобразования ]
Сложность: 3
Классы: 10,11

Докажите, что отображение  w =   является инверсией относительно единичной окружности.

Прислать комментарий     Решение

Задача 115932

Тема:   [ Свойства инверсии ]
Сложность: 3
Классы: 8,9

Пусть при инверсии относительно окружности с центром O точка A переходит в точку A' , а точка B — в B' . Докажите, что треугольники AOB и B'OA' подобны.
Прислать комментарий     Решение


Задача 116292

Темы:   [ Свойства инверсии ]
[ Вписанные четырехугольники ]
Сложность: 3
Классы: 8,9

Точки A' и B' — образы точек A и B при инверсии относительно некоторой окружности. Докажите, что точки A , B , A' и B' лежат на одной окружности.
Прислать комментарий     Решение


Задача 116094

Темы:   [ Свойства инверсии ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Точки X' и Y' – образы точек X и Y при инверсии относительно окружности с центром O радиуса R, причём точки X и Y отличны от O.
Докажите, что  X'Y' = XY· .

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .