ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Каких прямоугольников с целыми сторонами больше: с периметром 1996 или с периметром 1998? Хорды AC и BD окружности пересекаются в точке P. Перпендикуляры к AC и BD в точках C и D,
соответственно пересекаются в точке Q . Докажите, что если а > 0, b > 0, c > 0 и аb + bc + ca ≥ 12, то a + b + c ≥ 6. На гипотенузе BC прямоугольного треугольника ABC отмечены такие точки D и E, что AD ⊥ BC и AD = DE. На стороне AC отмечена такая точка F, что EF ⊥ BC. Найдите угол ABF. Вневписанная окружность треугольника ABC касается его стороны BC в точке K, а продолжения стороны AB – в точке L. Другая вневписанная окружность касается продолжений сторон AB и BC в точках M и N соответственно. Прямые KL и MN пересекаются в точке X. Докажите, что CX – биссектриса угла ACN. Семь монет расположены по кругу. Известно, что какие-то четыре из них, идущие подряд, – фальшивые и что каждая фальшивая монета легче настоящей. Объясните, как найти две фальшивые монеты за одно взвешивание на чашечных весах без гирь. (Все фальшивые монеты весят одинаково.) На столе в ряд лежат четыре монеты. Среди них обязательно есть как настоящие, так и фальшивые (которые легче настоящих). Известно, что любая настоящая монета лежит левее любой фальшивой. Как за одно взвешивание на чашечных весах без гирь определить тип каждой монеты, лежащей на столе? Имеются неправильные чашечные весы, мешок крупы и правильная гиря в 1 кг. Как отвесить на этих весах 1 кг крупы? Перед гномом лежат три кучки бриллиантов: 17, 21 и 27 штук. В одной из кучек лежит один фальшивый бриллиант. Все бриллианты имеют одинаковый вид, все настоящие бриллианты весят одинаково, а фальшивый отличается от них по весу. У гнома есть чашечные весы без гирь. Гному надо за одно взвешивание найти кучку, в которой все бриллианты настоящие. Как это сделать? Дана трапеция ABCD с основаниями AD = 3 и BC = 18. Точка M расположена на диагонали AC, причём AM : MC = 1 : 2. Прямая, проходящая через точку M параллельно основаниям трапеции, пересекает диагональ BD в точке N. Найдите MN. Числа 1, 2, ..., 100 стоят по кругу в некотором порядке. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 398]
Каждый из голосующих на выборах вносит в избирательный бюллетень фамилии 10 кандидатов. На избирательном участке находится 11 урн. После выборов выяснилось, что в каждой урне лежит хотя бы один бюллетень и при всяком выборе 11 бюллетеней по одному из каждой урны найдется кандидат, фамилия которого встречается в каждом из выбранных бюллетеней. Докажите, что по крайней мере в одной урне все бюллетени содержат фамилию одного и того же кандидата.
2000 яблок лежат в нескольких корзинах. Разрешается убирать корзины и
вынимать яблоки из корзин.
При каком наибольшем n можно раскрасить числа 1, 2, ..., 14 в красный и синий цвета так, чтобы для каждого числа k = 1, 2, ..., n нашлись пара синих чисел, разность между которыми равна k, и пара красных чисел, разность между которыми тоже равна k?
Сто гномов, веса которых равны 1, 2, 3, ..., 100 фунтов, собрались на левом берегу реки. Плавать они не умеют, но на этом же берегу находится гребная лодка грузоподъемностью 100 фунтов. Из-за течения плыть обратно трудно, поэтому у каждого гнома хватит сил грести с правого берега на левый не более одного раза (грести в лодке достаточно любому из гномов; гребец в течение одного рейса не меняется). Смогут ли все гномы переправиться на правый берег?
Числа 1, 2, ..., 100 стоят по кругу в некотором порядке.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 398]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке