ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существуют ли два многоугольника, у которых все вершины общие, но нет ни одной общей стороны?

   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 1341]      



Задача 115997

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Многоугольники (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Существуют ли два многоугольника, у которых все вершины общие, но нет ни одной общей стороны?

Прислать комментарий     Решение

Задача 116146

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Примеры и контрпримеры. Конструкции ]
[ Ломаные ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 7,8,9

Какое наибольшее количество точек самопересечения может иметь замкнутая ломаная, в которой 7 звеньев?

Прислать комментарий     Решение

Задача 116221

Темы:   [ Замощения костями домино и плитками ]
[ Четность и нечетность ]
Сложность: 3
Классы: 10

Доска 2010×2011 покрыта доминошками 2×1; некоторые из них лежат горизонтально, некоторые – вертикально.
Докажите, что граница горизонтальных доминошек с вертикальными имеет чётную длину.

Прислать комментарий     Решение

Задача 116281

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 10,11

В пространстве с декартовой системой координат дан прямоугольный параллелепипед, вершины которого имеют целочисленные координаты. Его объём равен 2011. Докажите, что рёбра параллелепипеда параллельны координатным осям.

Прислать комментарий     Решение

Задача 116377

Тема:   [ Замощения костями домино и плитками ]
Сложность: 3
Классы: 8,9

Из клетчатого прямоугольника 9×9 вырезали 16 клеток, у которых номера горизонталей и вертикалей чётные. Разрежьте оставшуюся фигуру на несколько клетчатых прямоугольников так, чтобы среди них было как можно меньше квадратиков 1×1.

Прислать комментарий     Решение

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 1341]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .