Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

С помощью циркуля и линейки разделите данный отрезок на n равных частей.

Вниз   Решение


В треугольнике ABC на сторонах AB, AC и BC выбраны точки D, E и F соответственно так, что  BF = 2CF,  CE = 2AE  и угол DEF – прямой.
Докажите, что DE – биссектриса угла ADF.

ВверхВниз   Решение


Пусть $AL$ — биссектриса треугольника $ABC$, точка $D$ — ее середина, $E$ — проекция $D$ на $AB$. Известно, что $AC = 3 AE$. Докажите, что треугольник $CEL$ равнобедренный.

ВверхВниз   Решение


Докажите, что в прямоугольном треугольнике биссектриса, проведённая из вершины прямого угла, не превосходит половины проекции гипотенузы на прямую, перпендикулярную этой биссектрисе.

ВверхВниз   Решение


На сторонах AB и BC треугольника ABC выбраны соответственно точки C1 и A1, отличные от вершин. Пусть K – середина A1C1, а I – центр окружности, вписанной в треугольник ABC. Оказалось, что четырёхугольник A1BC1I вписанный. Докажите, что угол AKC тупой.

ВверхВниз   Решение


Докажите, что если при инверсии относительно некоторой окружности с центром O окружность S переходит в окружность S' , то O — один из центров гомотетии окружностей S и S' .

ВверхВниз   Решение


С помощью циркуля и линейки постройте образ прямой при инверсии относительно данной окружности.

ВверхВниз   Решение


На сторонах AB, BC, CA треугольника ABC выбраны точки P, Q, R соответственно таким образом, что  AP = CQ  и четырёхугольник RPBQ– вписанный. Касательные к описанной окружности треугольника ABC в точках A и C пересекают прямые RP и RQ в точках X и Y соответственно. Докажите, что  RX = RY.

ВверхВниз   Решение


а) В каждой вершине куба написано число 1 или число 0. На каждой грани куба написана сумма четырёх чисел, написанных в вершинах этой грани. Может ли оказаться, что все числа, написанные на гранях, различны?
б) Тот же вопрос, если в вершинах написаны числа 1 или –1.

ВверхВниз   Решение


В сегмент вписываются всевозможные пары касающихся окружностей. Найдите множество их точек касания.

ВверхВниз   Решение


С помощью циркуля и линейки постройте окружность, касающуюся трёх данных попарно пересекающихся окружностей, проходящих через одну точку.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 58325

Темы:   [ Свойства инверсии ]
[ Замечательные точки и линии в треугольнике (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 7
Классы: 9,10,11

Докажите, что при инверсии относительно описанной окружности изодинамические центры треугольника переходят друг в друга.
Прислать комментарий     Решение


Задача 58326

Темы:   [ Построение окружностей ]
[ Свойства инверсии ]
Сложность: 4
Классы: 9,10

Постройте образ точки A при инверсии относительно окружности S с центром O.
Прислать комментарий     Решение


Задача 116093

Темы:   [ Построение окружностей ]
[ Свойства инверсии ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте окружность, касающуюся трёх данных попарно пересекающихся окружностей, проходящих через одну точку.
Прислать комментарий     Решение


Задача 116096

Темы:   [ Построение окружностей ]
[ Свойства инверсии ]
[ Инверсия помогает решить задачу ]
[ Общая касательная к двум окружностям ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте окружность, касающуюся двух данных окружностей и проходящую через данную точку, лежащую вне этих окружностей.
Прислать комментарий     Решение


Задача 116097

Темы:   [ Инверсия помогает решить задачу ]
[ Свойства инверсии ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4
Классы: 8,9

В сегмент вписываются всевозможные пары касающихся окружностей. Найдите множество их точек касания.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .