Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

В средней клетке полоски 1×2005 стоит фишка. Два игрока по очереди сдвигают ее: сначала первый игрок передвигает фишку на одну клетку в любую сторону, затем второй передвигает ее на 2 клетки, 1-й – на 4 клетки, 2-й – на 8 и т.д. (k-й сдвиг происходит на 2k-1 клеток). Тот, кто не может сделать очередной ход, проигрывает. Кто может выиграть независимо от игры соперника?

Вниз   Решение


В Заитильщине 57 деревень, между некоторыми из которых проложены дороги. Известно, что из каждой деревни можно попасть в любую другую, притом по единственному маршруту.
  а) Докажите, что найдётся деревня, из которой выходит лишь одна дорога.
  б) Сколько дорог в Заитильщине?

ВверхВниз   Решение


Автор: Сонкин М.

Окружность, вписанная в треугольник ABC касается его сторон AB , BC и CA в точках M , N и K соответственно. Прямая, проходящая через вершину A и параллельная NK , пересекает прямую MN в точке D . Прямая, проходящая через вершину A и параллельная MN , пересекает прямую NK в точке E . Докажите, что прямая DE содержит среднюю линию треугольника ABC .

ВверхВниз   Решение


В стране n городов. Между каждыми двумя из них проложена либо автомобильная, либо железная дорога. Турист хочет объехать страну, побывав в каждом городе ровно один раз, и вернуться в город, с которого он начинал путешествие. Докажите, что турист может выбрать город, с которого он начнет путешествие, и маршрут так, что ему придётся поменять вид транспорта не более одного раза.

ВверхВниз   Решение


Имеется 11 пустых коробок. За один ход можно положить по одной монете в какие-то 10 из них. Играют двое, ходят по очереди. Побеждает тот, после хода которого впервые в одной из коробок окажется 21 монета. Кто выигрывает при правильной игре?

ВверхВниз   Решение


Можно ли замостить доминошками 1×2 шахматную доску 8×8, из которой вырезаны
  а) клеточки b3 и e7;
  б) два противоположных угловых поля (a1 и h8)?

ВверхВниз   Решение


Петя раскрашивает 2006 точек, расположенных на окружности, в 17 цветов. Затем Коля проводит хорды с концами в отмеченных точках так, чтобы концы любой хорды были одноцветны и хорды не имели общих точек (в том числе и общих концов). При этом Коля хочет провести как можно больше хорд, а Петя старается ему помешать. Какое наибольшее количество хорд заведомо сможет провести Коля?

ВверхВниз   Решение


Дан шестиугольник ABCDEF, в котором AB = BC, CD = DE, EF = FA, а углы A и C — прямые. Докажите, что прямые FD и BE перпендикулярны.

Вверх   Решение

Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1358]      



Задача 66421

Темы:   [ Прямоугольные треугольники ]
[ Замечательные точки и линии в треугольнике (прочее) ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

В остроугольном треугольнике АВС биссектриса AN, высота BH и прямая, перпендикулярная стороне АВ и проходящая через ее середину, пересекаются в одной точке. Найдите угол ВАС.
Прислать комментарий     Решение


Задача 108499

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вспомогательная окружность ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC прямые, содержащие высоты AP, CR, и BQ (точки P, R и Q лежат на прямых, содержащих соответствующие стороны треугольника ABC), пересекаются в точке O. Найдите площади треугольников ABC и POC, если известно, что RP параллельно AC, AC = 4 и sin$ \angle$ABC = $ {\frac{24}{25}}$.

Прислать комментарий     Решение


Задача 108500

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вспомогательная окружность ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD диагонали AC и BD пересекаются в точке O и перпендикулярны боковым сторонам. Продолжения боковых сторон пересекаются в точке E. Найдите площади треугольников EAD и COD, если известно, что основание AD = 6 и sin$ \angle$CDA = $ {\frac{4}{5}}$.

Прислать комментарий     Решение


Задача 108522

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

Площадь прямоугольного треугольника ABC ( $ \angle$C = 90o) равна 6, радиус описанной около него окружности равен $ {\frac{5}{2}}$. Найдите радиус окружности, вписанной в данный треугольник.

Прислать комментарий     Решение


Задача 116187

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Радикальная ось ]
[ Вспомогательная окружность ]
[ Шестиугольники ]
Сложность: 3+
Классы: 8,9

Дан шестиугольник ABCDEF, в котором AB = BC, CD = DE, EF = FA, а углы A и C — прямые. Докажите, что прямые FD и BE перпендикулярны.

Прислать комментарий     Решение

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1358]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .