ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Вася придумал новую шахматную фигуру "супер-слон". Один "супер-слон" (обозначим его A) бьёт другого (обозначим его B), если они стоят на одной диагонали, между ними нет фигур, и следующая по диагонали клетка за "супер-слоном" B свободна. Например, на рисунке фигура a бьёт фигуру b, но не бьёт ни одну из фигур c, d, e, f и g.
В основании пирамиды объёма V лежит трапеция
с основаниями m и n . Плоскость отсекает от неё
пирамиду объёма U , а в сечении получается снова
трапеция с основаниями m1 и n1 . Докажите,
что Основания трапеции равны 3 см и 5 см. Одна из диагоналей трапеции равна 8 см, угол между диагоналями равен 60o . Найдите периметр трапеции.
Стороны треугольника a,b и c . Дана клетчатая полоска из 2n клеток, пронумерованных слева направо следующим образом: 1, 2, 3, ..., n, –n, ..., –2, –1 По этой полоске перемещают фишку, каждым ходом сдвигая её на то число клеток, которое указано в текущей клетке (вправо, если число положительно, и влево, если отрицательно). Известно, что фишка, начав с любой клетки, обойдёт все клетки полоски. Докажите, что число 2n + 1 простое. В правильном треугольнике ABC со стороной a проведена средняя линия MN параллельно AC . Через точку A и середину MN проведена прямая до пересечения с BC в точке D . Найдите AD . Прямая, проходящая через вершину основания равнобедренного треугольника, делит его площадь пополам, а периметр треугольника делит на части длиной 4 и 6. Найдите площадь треугольника и укажите, где лежит центр описанной окружности: внутри или вне треугольника. Даны пятьдесят различных натуральных чисел, двадцать пять из которых не превосходят 50, а остальные больше 50, но не превосходят 100. При этом никакие два из них не отличаются ровно на 50. Найдите сумму этих чисел.
В равностороннем треугольнике ABC сторона равна a .
На стороне BC лежит точка D , а на AB –
точка E так, что BD = Пусть x1, x2,..., xn – корни уравнения anxn + ... + a1x + a0 = 0. Какие корни будут у уравнений Можно ли из какой-то точки плоскости провести к графику многочлена n-й степени больше чем n касательных? Имеются два сосуда емкостью 1 л и 2 л. Из содержимого приготовили 0,5 л смеси, содержащей 40% яблочного сока, и 2,5 л смеси, содержащей 88% яблочного сока. Каково процентное содержание яблочного сока в сосудах? Баба-Яга и Кащей собрали некоторое количество мухоморов. Количество крапинок на мухоморах Бабы-Яги в 13 раз больше, чем на мухоморах Кащея, но после того, как Баба-Яга отдала Кащею свой мухомор с наименьшим числом крапинок, на её мухоморах стало крапинок только в 8 раз больше, чем у Кащея. Докажите, что в начале у Бабы-Яги было не более 23 мухоморов. На шахматную доску поставлены 11 коней так, что никакие два не бьют друг друга. Докажите, что многочлен степени n имеет не более чем n корней. Существует ли арифметическая прогрессия из 2011 натуральных чисел, в которой количество чисел, делящихся на 8, меньше, чем количество чисел, делящихся на 9, а последнее, в свою очередь, меньше, чем количество чисел, делящихся на 10? |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 133]
Доказать, что если целое n > 1, то 11·2²·3³·...·nn < nn(n+1)/2.
Существует ли арифметическая прогрессия из 2011 натуральных чисел, в которой количество чисел, делящихся на 8, меньше, чем количество чисел, делящихся на 9, а последнее, в свою очередь, меньше, чем количество чисел, делящихся на 10?
Существуют ли арифметическая прогрессия, состоящая лишь из простых чисел?
Дорога протяженностью 1 км полностью освещена фонарями, причем каждый фонарь освещает отрезок дороги длиной 1 м. Какое наибольшее количество фонарей может быть на дороге, если известно, что после выключения любого фонаря дорога будет освещена уже не полностью?
а) Можно ли разложить 20 монет достоинством в 1, 2, 3, ..., 19, 20 мунгу по трём карманам так, чтобы в каждом кармане оказалась одинаковая сумма денег? б) А если добавить еще один тугрик? (Как известно, один тугрик равен ста мунгу.)
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 133]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке