ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи ABC – равнобедренный прямоугольный треугольник. На продолжении гипотенузы AB за точку A взята точка D так, что AB = 2AD. Точки M и N на стороне AC таковы, что AM = NC. На продолжении стороны CB за точку B взята такая точка K, что CN = BK. Найдите угол между прямыми NK и DM.
Из вершины A треугольника ABC проведены биссектрисы
внутреннего и внешнего углов, пересекающие прямую BC в
точках D и E соответственно. Найдите радиус окружности,
описанной около треугольника ADE , если BC = a и
Правильный n-угольник A1...An вписан в окружность радиуса R с центром O,
ei = P и Q – подмножества множества выражений вида (a1, a2, ..., an), где ai – натуральные числа, не превосходящие данного натурального числа k (таких выражений всего kn). Для каждого элемента (p1, ..., pn) множества P и каждого элемента (q1, ..., qn) множества Q существует хотя бы один такой номер m, что pm = qm. Докажите, что хотя бы одно из множеств P и Q состоит не более чем из kn–1 элементов для На плоскости даны две прямые, пересекающиеся под острым углом. В направлении одной из прямых производится сжатие с коэффициентом 1/2. Доказать, что найдется точка, расстояние от которой до точки пересечения прямых увеличится. Окружность, вписанная в прямоугольную трапецию, делит её большую боковую сторону на отрезки, равные 1 и 4. Найдите площадь трапеции. |
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 159]
Вписанная окружность треугольника ABC имеет центр I и касается сторон AB, BC, CA в точках C1, A1, B1 соответственно. Обозначим через L основание биссектрисы угла B, а через K – точку пересечения прямых B1I и A1C1. Докажите, что KL || BB1.
Трапеция с основаниями a и b описана около окружности
радиуса R . Докажите, что ab
Провести хорду данной окружности, параллельную данному диаметру, так, чтобы эта хорда и диаметр были основаниями трапеций с наибольшим периметром.
Окружность, вписанная в прямоугольную трапецию, делит её большую боковую сторону на отрезки, равные 1 и 4. Найдите площадь трапеции.
Окружность, вписанная в равнобедренную трапецию, делит её боковую сторону на отрезки, равные 4 и 9. Найдите площадь трапеции.
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 159]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке