ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Набор из 2003 положительных чисел таков, что для любых двух входящих в него чисел a и b ( a>b ) хотя бы одно из чисел a+b или a-b тоже входит в набор. Докажите, что если данные числа упорядочить по возрастанию, то разности между соседними числами окажутся одинаковыми. Пусть K, L, M, N – середины сторон AB, BC, CD, AD выпуклого четырёхугольника ABCD; отрезки KM и LN пересекаются в точке O. В выпуклом четырёхугольнике ABCD: ∠ВАС = 20°, ∠ВСА = 35°, ∠ВDС = 40°, ∠ВDА = 70°. На некоторых клетках шахматной доски лежит по конфете. Известно, что в каждой строке, в каждом столбце и в каждой диагонали (любой длины, даже состоящей из одной клетки) лежит чётное количество конфет (возможно, ни одной). Какое максимальное количество конфет может лежать на доске? Числа от 1 до 37 записали в строку так, что сумма любых первых нескольких чисел делится на следующее за ними число. Найдите все простые числа p, q и r, для которых выполняется равенство: p + q = (p – q)r. Две окружности пересекаются в точках P и Q. Прямая пересекает эти окружности последовательно в точках A, B, C и D, как показано на рисунке. Как расположить в пространстве спичечный коробок, чтобы его проекция на плоскость имела наибольшую площадь? Для некоторых натуральных чисел a, b, c и d выполняются равенства a/c = b/d = ab+1/cd+1. Докажите, что a = c и b = d. Докажите, что остроугольный треугольник полностью покрывается тремя квадратами, построенными на его сторонах как на диагоналях. На сторонах AB и BC треугольника ABC выбраны точки M и N соответственно. Отрезки AN и CM пересекаются в точке O, причём AO = CO. Обязательно ли треугольник ABC равнобедренный, если а) AM = CN; б) BM = BN?
Диагонали прямоугольного параллелепипеда ABCDA1B1C1D1 ,
вписанного в сферу радиуса R , наклонены к плоскости основания
под углом 45o . Найдите площадь сечения этого параллелепипеда
плоскостью, которая проходит через диагональ AC1 , параллельна
диагонали основания BD и образует с диагональю BD1 угол, равный
arcsin В треугольнике ABC угол C – прямой. На стороне AC
нашлась такая точка D, а на отрезке BD – такая точка K, что ∠B = ∠KAD = ∠AKD. В городе Цветочном n площадей и m улиц (m ≥ n + 1). Каждая улица соединяет две площади и не проходит через другие площади. По существующей в городе традиции улица может называться либо Синей, либо Красной. Ежегодно в городе происходит переименование: выбирается площадь и переименовываются все выходящие из неё улицы. Докажите, что можно назвать улицы так, что переименованиями нельзя добиться одинаковых названий у всех улиц города. Существуют ли такие n-значные числа M и N, что все цифры M – чётные, все цифры N – нечётные, каждая цифра от 0 до 9 встречается в десятичной записи M или N хотя бы один раз и M делится на N? Внутри круга расположены точки A1, A2, ..., An, а на его границе – точки B1, B2, ..., Bn так, что отрезки A1B1, A2B2, ..., AnBn не пересекаются. Кузнечик может перепрыгнуть из точки Ai в точку Aj, если отрезок AiAj не пересекается ни с одним из отрезков AkBk, k ≠ i, j. Делится ли число 2110 – 1 на 2200? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 420]
Существует ли натуральное число, кратное 2007, сумма цифр которого равна 2007?
Делится ли число 2110 – 1 на 2200?
Целые числа a и b таковы, что 56a = 65b. Докажите, что a + b – составное число.
Известно, что выражение 14x + 13y делится на 11 при некоторых целых x и y. Докажите, что 19x + 9y также делится на 11 при таких x и y.
Сумма двух натуральных чисел равна 201. Докажите, что произведение этих чисел не может делиться на 201.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 420]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке