ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Вписанный угол
>>
Вписанный угол, опирающийся на диаметр
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть O – центр описанной окружности остроугольного неравнобедренного треугольника ABC, точка C1 симметрична C относительно O, D – середина стороны AB, K – центр описанной окружности треугольника ODC1. Докажите, что точка O делит пополам отрезок прямой OK, лежащий внутри угла ACB. Решение |
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 303]
Пусть O – центр описанной окружности остроугольного неравнобедренного треугольника ABC, точка C1 симметрична C относительно O, D – середина стороны AB, K – центр описанной окружности треугольника ODC1. Докажите, что точка O делит пополам отрезок прямой OK, лежащий внутри угла ACB.
Вписанная в треугольник ABC окружность касается его сторон AC и BC в точках M и N соответственно и пересекает биссектрису BD в точках P и Q. Найдите отношение площадей треугольников PQM и PQN, если A = , B = .
Около треугольника APK описана окружность радиуса 1. Продолжение стороны AP за вершину P отсекает от касательной к окружности, проведённой через вершину K, отрезок BK, равный 7. Найдите площадь треугольника APK, если известно, что угол ABK равен arctg.
В треугольнике ABC точка D лежит на стороне BC, а точка O -- на отрезке AD. Известно, что точки C, D и O лежат на окружности, центр которой находится на стороне AC, 4AC = 3AB, угол DAC в два раза больше угла BAD, а угол OCA в два раза меньше угла OCB. Найдите косинус угла ABC.
В треугольнике ABC точка D лежит на стороне BC, прямая AD пересекается с биссектрисой угла ACB в точке O. Известно, что точки C, D и O лежат на окружности, центр которой находится на стороне AC, AC : AB = 4 : 3, а угол DAC в три раза больше угла DAB. Найдите косинус угла ACB.
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 303] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|