ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В правильной треугольной пирамиде ABCD длина бокового ребра равна 12, а угол между основанием ABC и боковой гранью равен . Точки K, M, N – середины рёбер AB, CD, AC соответственно. Точка E лежит на отрезке KM и 2ME = KE. Через точку E проходит плоскость П перпендикулярно отрезку KM. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние от точки N до плоскости П.

   Решение

Задачи

Страница: << 131 132 133 134 135 136 137 >> [Всего задач: 694]      



Задача 109643

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Развертка помогает решить задачу ]
[ Теорема о трех перпендикулярах ]
[ Правильный тетраэдр ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Замечательные точки и линии в треугольнике (прочее) ]
Сложность: 5-
Классы: 10,11

Сфера, вписанная в тетраэдр, касается одной из его граней в точке пересечения биссектрис, другой – в точке пересечения высот, третьей – в точке пересечения медиан. Докажите, что тетраэдр правильный.

Прислать комментарий     Решение

Задача 108997

Темы:   [ Максимальное/минимальное расстояние ]
[ Куб ]
[ Теорема Пифагора в пространстве ]
Сложность: 5
Классы: 10,11

На диагонали AC нижней грани единичного куба ABCDA1B1C1D1 отложен отрезок AE длины l . На диагонали B1D1 его верхней грани отложен отрезок B1F длиной ml . При каком l (и фиксированном m>0 ) длина отрезка EF будет наименьшей?
Прислать комментарий     Решение


Задача 116649

Темы:   [ Задачи на движение ]
[ Выход в пространство ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Плоскость, разрезанная прямыми ]
[ Принцип Дирихле (прочее) ]
Сложность: 5
Классы: 10,11

По шоссе в одном направлении едут 10 автомобилей. Шоссе проходит через несколько населённых пунктов. Каждый из автомобилей едет с некоторой постоянной скоростью в населённых пунктах и с некоторой другой постоянной скоростью вне населённых пунктов. Для разных автомобилей эти скорости могут отличаться. Вдоль шоссе расположено 2011 флажков. Известно, что каждый автомобиль проехал мимо каждого флажка, причём около флажков обгонов не происходило. Докажите, что мимо каких-то двух флажков автомобили проехали в одном и том же порядке.

Прислать комментарий     Решение

Задача 35505

Темы:   [ Куб ]
[ Пятиугольники ]
[ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11

Может ли некоторое сечение куба быть правильным пятиугольником?

Прислать комментарий     Решение

Задача 116518

Темы:   [ Расстояние от точки до плоскости ]
[ Сечения, развертки и остовы (прочее) ]
[ Правильная пирамида ]
[ Теорема о трех перпендикулярах ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Неопределено ]
Сложность: 3+
Классы: 10,11

В правильной треугольной пирамиде ABCD длина бокового ребра равна 12, а угол между основанием ABC и боковой гранью равен . Точки K, M, N – середины рёбер AB, CD, AC соответственно. Точка E лежит на отрезке KM и 2ME = KE. Через точку E проходит плоскость П перпендикулярно отрезку KM. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние от точки N до плоскости П.

Прислать комментарий     Решение

Страница: << 131 132 133 134 135 136 137 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .