Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Дана трапеция ABCD, M – точка пересечения её диагоналей. Известно, что боковая сторона AB перпендикулярна основаниям AD и BC и что в трапецию можно вписать окружность. Найдите площадь треугольника DCM, если радиус этой окружности равен r.

Вниз   Решение


Bнутри окружности зафиксирована точка P. C — произвольная точка окружности, AB – хорда, проходящая через точку P и перпендикулярная отрезку PC. Tочки X и Y являются проекциями точки P на прямые AC и BC. Докажите, что все отрезки XY касаются одной и той же окружности.

ВверхВниз   Решение


Даны правильная четырёхугольная пирамида SABCD и цилиндр, центр симметрии которого лежит на прямой SO ( SO – высота пирамиды). Точка F – середина ребра SD , точка E принадлежит апофеме ST грани BSC , причём TE=3ES . Прямоугольник, являющийся одним из осевых сечений цилиндра, расположен так, что две его вершины лежат на прямой AB , а одна из двух других вершин лежит на прямой EF . Найдите объём цилиндра, если SO=3 , AB=1 .

ВверхВниз   Решение


Пусть A , B , C и D – четыре точки пространства, не лежащие в одной плоскости. Докажите, что отрезок, соединяющий середины AB и CD , пересекается с отрезком, соединяющим середины AD и BC . При этом каждый из указанных отрезков делится точкой пересечения пополам.

ВверхВниз   Решение


Высоты остроугольного треугольника ABC пересекаются в точке O . Окружность радиуса R с центром в точке O проходит через вершину A , касается стороны BC и пересекает сторону AC в точке M такой, что AM:MC=4:1 . Найдите длину стороны AB .

ВверхВниз   Решение


В правильной треугольной пирамиде ABCD длина бокового ребра равна 12, а угол между основанием ABC и боковой гранью равен . Точки K, M, N – середины рёбер AB, CD, AC соответственно. Точка E лежит на отрезке KM и 2ME = KE. Через точку E проходит плоскость П перпендикулярно отрезку KM. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние от точки N до плоскости П.

Вверх   Решение

Задачи

Страница: << 95 96 97 98 99 100 101 >> [Всего задач: 540]      



Задача 110509

Темы:   [ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
[ Сфера, описанная около пирамиды ]
Сложность: 3
Классы: 10,11

Расстояние от центра O шара радиуса 9, описанного около правильной четырёхугольной пирамиды, до бокового ребра в раз больше расстояния от точки O до боковой грани пирамиды. Найдите: 1) высоту пирамиды; 2) расстояние от точки O до боковой грани пирамиды; 3) радиус вписанного в пирамиду шара.
Прислать комментарий     Решение


Задача 65416

Темы:   [ Наглядная геометрия ]
[ Четырехугольная пирамида ]
[ Правильная пирамида ]
Сложность: 3+
Классы: 8,9,10,11

На землю положили квадратную раму, в центре квадрата установили вертикальный шест. Когда на эту конструкцию сверху натянули ткань, получилась маленькая палатка. Если положить рядом вплотную две таких же рамы, в центре каждой поставить вертикальный шест той же длины и натянуть сверху ткань, получится большая палатка. На маленькую палатку ушло 4 квадратных метра ткани. А сколько ткани потребуется для большой палатки?

Прислать комментарий     Решение

Задача 116518

Темы:   [ Расстояние от точки до плоскости ]
[ Сечения, развертки и остовы (прочее) ]
[ Правильная пирамида ]
[ Теорема о трех перпендикулярах ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Неопределено ]
Сложность: 3+
Классы: 10,11

В правильной треугольной пирамиде ABCD длина бокового ребра равна 12, а угол между основанием ABC и боковой гранью равен . Точки K, M, N – середины рёбер AB, CD, AC соответственно. Точка E лежит на отрезке KM и 2ME = KE. Через точку E проходит плоскость П перпендикулярно отрезку KM. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние от точки N до плоскости П.

Прислать комментарий     Решение

Задача 116519

Темы:   [ Расстояние от точки до плоскости ]
[ Сечения, развертки и остовы (прочее) ]
[ Правильная пирамида ]
[ Теорема о трех перпендикулярах ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 10,11

В правильной треугольной пирамиде ABCD сторона основания ABC равна 4, угол между плоскостью основания ABC и боковой гранью равен . Точки K, M, N – середины отрезков AB, DK, AC соответственно, точка E лежит на отрезке CM и 5ME = CE. Через точку E проходит плоскость П перпендикулярно отрезку CM. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние от точки N до плоскости П.

Прислать комментарий     Решение

Задача 87135

Темы:   [ Высота пирамиды (тетраэдра) ]
[ Касающиеся сферы ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

В правильной треугольной пирамиде расположен шар радиуса 1. В точке, делящей пополам высоту пирамиды, он касается внешним образом полушара. Полушар опирается на круг, вписанный в основание пирамиды, шар касается боковых граней пирамиды. Найдите площадь боковой поверхности пирамиды и угол между боковыми гранями пирамиды.
Прислать комментарий     Решение


Страница: << 95 96 97 98 99 100 101 >> [Всего задач: 540]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .