Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Один из углов треугольника равен α. Найдите угол между прямыми, содержащими высоты, проведённые из вершин двух других углов.

Вниз   Решение


Основание правильной четырёхугольной пирамиды – квадрат со стороной 8. Высота пирамиды равна 9. Через сторону основания проведена плоскость, образующая с плоскостью основания угол, равный arctg . Найдите площадь сечения пирамиды этой плоскостью.

ВверхВниз   Решение


Апофема правильной четырёхугольной пирамиды равна a , а противоположные боковые грани пирамиды взаимно перпендикулярны. Найдите радиусы описанной и вписанной сфер.

ВверхВниз   Решение


Автор: Карасев Р.

На прямой выбрано 100 множеств A1, A2, .. , A100 , каждое из которых является объединением 100 попарно непересекающихся отрезков. Докажите, что пересечение множеств A1, A2, .. , A100 является объединением не более 9901 попарно непересекающихся отрезков (точка также считается отрезком).

ВверхВниз   Решение


В треугольнике ABC проведена биссектриса BL. Известно, что  BL = AB.  На продолжении BL за точку L выбрана точка K, причём  ∠BAK + ∠BAL = 180°.  Докажите, что  BK = BC.

ВверхВниз   Решение


В правильной треугольной пирамиде ABCD сторона основания ABC равна 4, угол между плоскостью основания ABC и боковой гранью равен . Точки K, M, N – середины отрезков AB, DK, AC соответственно, точка E лежит на отрезке CM и 5ME = CE. Через точку E проходит плоскость П перпендикулярно отрезку CM. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние от точки N до плоскости П.

Вверх   Решение

Задачи

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 312]      



Задача 53822

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема Пифагора (прямая и обратная) ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В равнобедренную трапецию ABCD  (BC || AD)  вписана окружность радиуса R, касающаяся основания AD в точке P и пересекающая отрезок BP в такой точке Q, что  PQ = 3BQ.  Найдите углы и площадь трапеции.

Прислать комментарий     Решение

Задача 109439

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Прямоугольные параллелепипеды ]
[ Углы между прямыми и плоскостями ]
[ Вспомогательные подобные треугольники ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Неравенство Коши ]
Сложность: 4
Классы: 10,11

Основанием прямоугольного параллелепипеда АВСDA1B1C1D1 является квадрат АВСD.
Найдите наибольшую возможную величину угла между прямой BD1 и плоскостью ВDС1.

Прислать комментарий     Решение

Задача 116171

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Теорема синусов ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Вписанные четырехугольники (прочее) ]
[ Описанные четырехугольники ]
Сложность: 4
Классы: 8,9

Bнутри окружности зафиксирована точка P. C — произвольная точка окружности, AB – хорда, проходящая через точку P и перпендикулярная отрезку PC. Tочки X и Y являются проекциями точки P на прямые AC и BC. Докажите, что все отрезки XY касаются одной и той же окружности.

Прислать комментарий     Решение

Задача 116518

Темы:   [ Расстояние от точки до плоскости ]
[ Сечения, развертки и остовы (прочее) ]
[ Правильная пирамида ]
[ Теорема о трех перпендикулярах ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Неопределено ]
Сложность: 3+
Классы: 10,11

В правильной треугольной пирамиде ABCD длина бокового ребра равна 12, а угол между основанием ABC и боковой гранью равен . Точки K, M, N – середины рёбер AB, CD, AC соответственно. Точка E лежит на отрезке KM и 2ME = KE. Через точку E проходит плоскость П перпендикулярно отрезку KM. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние от точки N до плоскости П.

Прислать комментарий     Решение

Задача 116519

Темы:   [ Расстояние от точки до плоскости ]
[ Сечения, развертки и остовы (прочее) ]
[ Правильная пирамида ]
[ Теорема о трех перпендикулярах ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 10,11

В правильной треугольной пирамиде ABCD сторона основания ABC равна 4, угол между плоскостью основания ABC и боковой гранью равен . Точки K, M, N – середины отрезков AB, DK, AC соответственно, точка E лежит на отрезке CM и 5ME = CE. Через точку E проходит плоскость П перпендикулярно отрезку CM. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние от точки N до плоскости П.

Прислать комментарий     Решение

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 312]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .