ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Рассматриваются все треугольники АВС, у которых положение вершин В и С зафиксировано, а вершина А перемещается в плоскости треугольника так, что медиана СМ имеет одну и ту же длину. По какой траектории движется точка А?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]      



Задача 58017

Темы:   [ Поворотная гомотетия ]
[ Гомотетия: построения и геометрические места точек ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 5-
Классы: 9,10,11

Дана полуокружность с диаметром AB. Для каждой точки X этой полуокружности на луче XA откладывается точка Y так, что XY = kXB. Найдите ГМТ Y.
Прислать комментарий     Решение


Задача 116538

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Рассматриваются все треугольники АВС, у которых положение вершин В и С зафиксировано, а вершина А перемещается в плоскости треугольника так, что медиана СМ имеет одну и ту же длину. По какой траектории движется точка А?

Прислать комментарий     Решение

Задача 66243

Темы:   [ Четырехугольники (построения) ]
[ Вписанные и описанные окружности ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 4-
Классы: 9,10

Выпуклый четырёхугольник разрезан диагоналями на четыре треугольника. Восстановите четырёхугольник по центрам описанных окружностей двух соседних треугольников и центрам вписанных окружностей двух противоположных друг другу треугольников.

Прислать комментарий     Решение

Задача 110768

Темы:   [ Построение треугольников по различным элементам ]
[ Гомотетичные окружности ]
[ Гомотетия: построения и геометрические места точек ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Прямая Эйлера и окружность девяти точек ]
[ Формула Эйлера ]
[ Замечательные точки и линии в треугольнике (прочее) ]
Сложность: 5+
Классы: 9,10,11

Постройте треугольник, если даны центр вписанной в него окружности, середина одной из сторон и основание опущенной на эту сторону высоты.
Прислать комментарий     Решение


Задача 108045

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Гомотетия: построения и геометрические места точек ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Автор: Табов Й.

Для каждой точки C полуокружности с диаметром AB (C отлична от A и B) на сторонах AC и BC треугольника ABC построены вне треугольника квадраты. Найдите геометрическое место середин отрезков, соединяющих их центры.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .