|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Даны 1985 множеств, каждое из которых состоит из 45 элементов, причём
объединение любых двух множеств содержит ровно 89 элементов. Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]
Существует ли выпуклый многогранник, у которого есть диагонали и каждая диагональ меньше любого ребра?
Грани выпуклого многогранника – подобные треугольники.
Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.
Какое наибольшее количество треугольных граней может иметь пятигранник?
У Васи есть камень (однородный, без внутренних полостей), имеющий форму выпуклого многогранника, у которого есть только треугольные и шестиугольные грани. Вася утверждает, что он разбил этот камень на две части так, что можно сложить из них куб (без внутренних полостей). Могут ли слова Васи быть правдой?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|