Страница:
<< 1 2 3
4 >> [Всего задач: 18]
Постройте точку M внутри данного треугольника так, что
SABM : SBCM : SACM = 1 : 2 : 3.
|
|
Сложность: 4 Классы: 8,9,10
|
В треугольнике ABC провели биссектрису CL. В треугольники CAL и CBL вписали окружности, которые касаются прямой AB в точках M и N соответственно. Затем все, кроме точек A, L, M и N, стерли. С помощью циркуля и линейки восстановите треугольник.
|
|
Сложность: 3+ Классы: 8,9,10
|
В треугольнике провести прямую, параллельную одной из сторон, так, чтобы площадь отсечённого треугольника равнялась 1/k площади данного треугольника (k – натуральное число), а оставшуюся часть треугольника разделить прямыми на p равновеликих частей. (Предполагается, что у нас есть отрезок единичной длины.)
|
|
Сложность: 5- Классы: 10,11
|
На плоскости даны оси координат с одинаковым, но не
обозначенным масштабом и график функции
y= sin x, x(0;α).
Как с помощью циркуля и линейки построить касательную к этому графику
в заданной его точке, если:
а)
α(
;π)
;
б)
α(0
;)
?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Митя купил на день рождения круглый торт диаметром 36 сантиметров и 13 тоненьких свечек. Мите не нравится, когда свечки стоят слишком близко, поэтому он хочет поставить их на расстоянии не меньше 10 сантиметров друг от друга. Поместятся ли все свечки на торте?
Страница:
<< 1 2 3
4 >> [Всего задач: 18]