ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

При каких n можно оклеить в один слой поверхность клетчатого куба n×n×n бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?

   Решение

Задачи

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 383]      



Задача 109829

Темы:   [ Раскраски ]
[ Целочисленные решетки (прочее) ]
[ Степень вершины ]
[ Перестройки ]
[ Процессы и операции ]
Сложность: 5
Классы: 8,9,10

На бесконечном белом листе клетчатой бумаги конечное число клеток окрашено в чёрный цвет так, что у каждой чёрной клетки чётное число (0, 2 или 4) белых клеток, соседних с ней по стороне. Докажите, что каждую белую клетку можно окрасить в красный или зелёный цвет так, чтобы у каждой чёрной клетки стало поровну красных и зелёных клеток, соседних с ней по стороне.

Прислать комментарий     Решение

Задача 98443

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Деревья ]
[ Доказательство от противного ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Замощения костями домино и плитками ]
[ Раскраски ]
[ Теорема Пика ]
Сложность: 5+
Классы: 9,10,11

Ладья, делая ходы по вертикали и горизонтали на соседнее поле, за 64 хода обошла все поля шахматной доски 8×8 и вернулась на исходное поле. Докажите, что число ходов по вертикали не равно числу ходов по горизонтали.

Прислать комментарий     Решение

Задача 116911

Темы:   [ Замощения костями домино и плитками ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
[ Степень вершины ]
Сложность: 3
Классы: 9,10

При каких n можно оклеить в один слой поверхность клетчатого куба n×n×n бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?

Прислать комментарий     Решение

Задача 32860

Темы:   [ Раскраски ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
[ Степень вершины ]
Сложность: 3+
Классы: 7

а) Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило пять проводов разного цвета.
б) Каждые две из девяти ЭВМ соединены своим проводом. Можно ли раскрасить каждый из этих проводов в один из восьми цветов так, чтобы из каждой ЭВМ выходило восемь проводов разного цвета?

Прислать комментарий     Решение

Задача 65000

Темы:   [ Раскраски ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
[ Степень вершины ]
Сложность: 3+

Каждые два из n блоков ЭВМ соединены проводом. Можно ли каждый из этих проводов покрасить в один из  n – 1  цветов так, чтобы от каждого блока отходил  n – 1  провод разного цвета, если  а)  n = 6;  б)  n = 13?

Прислать комментарий     Решение

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 383]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .