ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Серединный перпендикуляр к стороне AC неравнобедренного остроугольного треугольника ABC пересекает прямые AB и BC в точках B1 и B2 соответственно, а серединный перпендикуляр к стороне AB пересекает прямые AC и BC в точках C1 и C2 соответственно. Описанные окружности треугольников BB1B2 и CC1C2 пересекаются в точках P и Q. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PQ.

   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 149]      



Задача 116937

Темы:   [ Вписанные и описанные окружности ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10

Серединный перпендикуляр к стороне AC неравнобедренного остроугольного треугольника ABC пересекает прямые AB и BC в точках B1 и B2 соответственно, а серединный перпендикуляр к стороне AB пересекает прямые AC и BC в точках C1 и C2 соответственно. Описанные окружности треугольников BB1B2 и CC1C2 пересекаются в точках P и Q. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PQ.

Прислать комментарий     Решение

Задача 64354

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Симметрия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 5-
Классы: 9,10,11

Автор: Пастор А.

Внутри вписанного четырёхугольника ABCD отмечены такие точки P и Q, что  ∠PDC + ∠PCB = ∠PAB + ∠PBC = ∠QCD + ∠QDA = ∠QBA + ∠QAD = 90°.
Докажите, что прямая PQ образует равные углы с прямыми AD и BC.

Прислать комментарий     Решение

Задача 109488

Темы:   [ Точка Микеля ]
[ Вписанные и описанные окружности ]
[ Радикальная ось ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательная окружность ]
[ ГМТ и вписанный угол ]
Сложность: 5+
Классы: 9,10,11

Точки A' , B' и C' "– середины сторон BC , CA и AB треугольника ABC соответственно, а BH "– его высота. Докажите, что если описанные около треугольников AHC' и CHA' окружности проходят через точку M , отличную от H , то ABM= CBB' .
Прислать комментарий     Решение


Задача 109847

Темы:   [ Свойства симметрий и осей симметрии ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
Сложность: 6-
Классы: 8,9,10,11

Окружность σ касается равных сторон AB и AC равнобедренного треугольника ABC и пересекает сторону BC в точках K и L . Отрезок AK пересекает σ второй раз в точке M . Точки P и Q симметричны точке K относительно точек B и C соответственно. Докажите, что описанная окружность треугольника PMQ касается окружности σ .
Прислать комментарий     Решение


Задача 107757

Темы:   [ Вспомогательные равные треугольники ]
[ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9,10

Две окружности пересекаются в точках A и B. В точке A к обеим проведены касательные, пересекающие окружности в точках M и N. Прямые BM и BN пересекают окружности еще раз в точках P и Q (P – на прямой BM, Q – на прямой BN). Докажите, что отрезки MP и NQ равны.

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .