ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Три попарно непересекающиеся окружности ωx, ωy, ωz радиусов rx, ry, rz лежат по одну сторону от прямой t и касаются её в точках X, Y, Z соответственно. Известно, что Y – середина отрезка XZ,  rx = rz = r,  а  ry > r.  Пусть p – одна из общих внутренних касательных к окружностям ωx и ωy, а q – одна из общих внутренних касательных к окружностям ωy и ωz. В пересечении прямых p, q, t образовался неравнобедренный треугольник. Докажите, что радиус его вписанной окружности равен r.

   Решение

Задачи

Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 769]      



Задача 116952

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Общая касательная к двум окружностям ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Три попарно непересекающиеся окружности ωx, ωy, ωz радиусов rx, ry, rz лежат по одну сторону от прямой t и касаются её в точках X, Y, Z соответственно. Известно, что Y – середина отрезка XZ,  rx = rz = r,  а  ry > r.  Пусть p – одна из общих внутренних касательных к окружностям ωx и ωy, а q – одна из общих внутренних касательных к окружностям ωy и ωz. В пересечении прямых p, q, t образовался неравнобедренный треугольник. Докажите, что радиус его вписанной окружности равен r.

Прислать комментарий     Решение

Задача 67096

Темы:   [ Правильный (равносторонний) треугольник ]
[ Изогональное сопряжение ]
[ Прямые, касающиеся окружностей (прочее) ]
Сложность: 4
Классы: 8,9,10,11

В треугольнике $ABC$ $\angle A=60^{\circ}$, точка $T$ такова, что $\angle ATB=\angle BTC=\angle ATC$. Окружность, проходящая через точки $B$, $C$ и $T$, повторно пересекает прямые $AB$ и $AC$ в точках $K$ и $L$. Докажите, что точки $K$ и $L$ равноудалены от прямой $AT$.
Прислать комментарий     Решение


Задача 35489

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 9,10,11

Дан правильный треугольник ABC с центром O. Прямая, проходящая через вершину C, пересекает описанную окружность треугольника AOB в точках D и E. Докажите, что точки A, O и середины отрезков BD, BE лежат на одной окружности.

Прислать комментарий     Решение

Задача 52654

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства касательной ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

Около окружности радиуса $ {\frac{2}{\sqrt{3}}}$ описана равнобедренная трапеция. Угол между диагоналями трапеции, опирающийся на основание, равен 2arctg$ {\frac{2}{\sqrt{3}}}$. Найдите отрезок, соединяющий точки касания окружности с большим основанием трапеции и одной из её боковых сторон.

Прислать комментарий     Решение


Задача 52683

Темы:   [ Вневписанные окружности ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Две касательные, проведенные из одной точки ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Формулы для площади треугольника ]
Сложность: 4
Классы: 8,9

В треугольнике ABC с периметром 2p острый угол BAC равен $ \alpha$. Окружность с центром в точке O касается стороны BC и продолжения сторон AB и AC в точках K и L соответственно. Точка D лежит внутри отрезка AK, AD = a. Найдите площадь треугольника DOK.

Прислать комментарий     Решение


Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .