ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите все такие натуральные k, что при каждом нечётном  n > 100  число  20n + 13n  делится на k.

   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 275]      



Задача 109687

Темы:   [ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Четыре натуральных числа таковы, что квадрат суммы любых двух из них делится на произведение двух оставшихся.
Докажите, что по крайней мере три из этих чисел равны между собой.

Прислать комментарий     Решение

Задача 110077

Темы:   [ Задачи на проценты и отношения ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 8,9

Можно ли числа 1, 2, ..., 10 расставить в ряд в некотором порядке так, чтобы каждое из них, начиная со второго, отличалось от предыдущего на целое число процентов?

Прислать комментарий     Решение

Задача 110144

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Разложение на множители ]
Сложность: 4-
Классы: 7,8,9

Для некоторых натуральных чисел a, b, c и d выполняются равенства  a/c = b/d = ab+1/cd+1.  Докажите, что  a = c  и  b = d.

Прислать комментарий     Решение

Задача 116763

Темы:   [ Арифметика остатков (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Пусть  a1, ..., a10  – различные натуральные числа, не меньшие 3, сумма которых равна 678. Может ли сумма остатков от деления некоторого натурального числа n на 20 чисел  a1, a2, ..., a10, 2a1, 2a2,..., 2a10  равняться 2012?

Прислать комментарий     Решение

Задача 116953

Темы:   [ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 8,9,10

Найдите все такие натуральные k, что при каждом нечётном  n > 100  число  20n + 13n  делится на k.

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .