Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

На столе лежат четыре одинаковые монеты. Разрешается двигать монеты, не отрывая их от стола. Нужно расположить (не пользуясь измерительными инструментами!) монеты так, чтобы можно было положить на стол пятую монету такого же размера, касающуюся этих четырёх.

Вниз   Решение


Прямая отсекает треугольник AKN от правильного шестиугольника ABCDEF так, что  AK + AN = AB.
Найдите сумму углов, под которыми отрезок KN виден из вершин шестиугольника  (∠KAN + ∠KBN + ∠KCN + ∠KDN + ∠KEN + ∠KFN).

ВверхВниз   Решение


Внутри стороны BC правильного треугольника ABC взята точка D. Прямая, проходящая через точку C и параллельная AD, пересекает прямую AB в точке E. Докажите, что  

ВверхВниз   Решение


Футбольный мяч сшит из 32 лоскутков: белых шестиугольников и чёрных пятиугольников. Каждый чёрный лоскут граничит только с белыми, а каждый белый — с тремя чёрными и тремя белыми. Сколько лоскутков белого цвета?

ВверхВниз   Решение


Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью ABC на плоскость. Точка F – середина ребра CD, точка S лежит на прямой AB,  AB = 2BS,  точка B лежит между A и S. В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным?

ВверхВниз   Решение


В треугольнике ABC известно, что AB = 10, BC = 24, а медиана BD равна 13. Окружности, вписанные в треугольники ABD и BDC касаются медианы BD в точках M и N соответственно. Найдите MN.

ВверхВниз   Решение


AA1 — высота остроугольного треугольника ABC , H — точка пересечения высот, O — центр окружности, описанной около треугольника ABC . Найдите OH , если известно, что AH=3 , A1H=2 , а радиус окружности равен 4.

ВверхВниз   Решение


Найдите радиусы вписанной и вневписанных окружностей треугольника со сторонами 5, 12 и 13.

ВверхВниз   Решение


Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью ABC на плоскость. Точка F лежит на ребре CD и  2DF = FC,  точка S лежит на прямой AB,  AB = 3BS  и точка B лежит между A и S. В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным?

ВверхВниз   Решение


Две окружности O и O1 пересекаются в точке A . Провести через точку A такую прямую, чтобы отрезок BC , высекаемый на ней окружностями O и O1 , был равен данному.

ВверхВниз   Решение


2n шахматистов дважды провели круговой турнир (за победу начисляется одно очко, за ничью – ½, за поражение – 0).
Докажите, что если сумма очков каждого изменилась не менее чем на n, то она изменилась ровно на n.

ВверхВниз   Решение


В равнобедренную трапецию KLMN ( LM$ \Vert$KN) вписана окружность, касающася сторон LM и KN в точках P и Q соответственно, KN = 4$ \sqrt{6}$, PQ = 4. Прямая CN пересекает отрезок PQ в точке C, а вписанную окружность — в точках A и B (A между N и C), PC : CQ = 3. Найдите AC.

ВверхВниз   Решение


В треугольнике ABC известно, что AB = BC, AC = 4$ \sqrt{3}$, радиус вписанной окружности равен 3. Прямая AE пересекает высоту BD в точке E, а вписанную окружность — в точках M и N (M лежит между A и E), ED = 2. Найдите EN.

ВверхВниз   Решение


Разрежьте по клеточкам квадрат 7×7 на девять прямоугольников (не обязательно различных), из которых можно будет сложить любой прямоугольник со сторонами, не превосходящими 7.

Вверх   Решение

Задачи

Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 598]      



Задача 107773

Темы:   [ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 7,8,9

Докажите, что все числа 10017, 100117, 1001117, ... делятся на 53.

Прислать комментарий     Решение

Задача 108737

Темы:   [ Ребусы ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 8,9

Решите задачу 3 для надписи A, BC, DEF, CGH, CBE, EKG.
Прислать комментарий     Решение


Задача 116956

Темы:   [ Ребусы ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 5,6,7

Автор: Шноль Д.Э.

Вот ребус довольно простой:
ЭХ вчетверо больше, чем ОЙ.
АЙ вчетверо больше, чем ОХ.
Найди сумму всех четырёх.

Прислать комментарий     Решение

Задача 117004

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Двоичная система счисления ]
Сложность: 3
Классы: 5,6,7

Разрежьте по клеточкам квадрат 7×7 на девять прямоугольников (не обязательно различных), из которых можно будет сложить любой прямоугольник со сторонами, не превосходящими 7.

Прислать комментарий     Решение

Задача 35176

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9,10

Найдите число нулей, на которое оканчивается число  11100 – 1.

Прислать комментарий     Решение

Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .