ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В Чикаго орудует 36 преступных банд, некоторые из которых враждуют между собой. Каждый гангстер состоит в нескольких бандах, причём каждые два гангстера состоят в разных наборах банд. Известно, что ни один гангстер не состоит в двух бандах, враждующих между собой. Кроме того, оказалось, что каждая банда, в которой не состоит некоторый гангстер, враждует с какой-то бандой, в которой данный гангстер состоит. Какое наибольшее количество гангстеров может быть в Чикаго? Ладья стоит на левом поле клетчатой полоски 1×30 и за ход может сдвинуться на любое количество клеток вправо. В треугольнике ABC перпендикуляр, проходящий через середину стороны AB, пересекает сторону AC в точке M, причём MA/MC = 3. Перпендикуляр, проходящий через середину стороны AC, пересекает сторону AB в точке N, причём AN/BN = 2. Найдите углы треугольника ABC. Найдите все простые числа, которые отличаются на 17. Какое наибольшее число точек можно разместить Касательные к описанной вокруг треугольника ABC окружности, проведённые в точках A и B, пересекаются в точке P.
Имеются два сосуда. В них разлили 1 л воды. Из
первого сосуда переливают половину воды во второй, затем из
второго переливают половину оказавшейся в нем воды в первый,
затем из первого сосуда переливают половину оказавшейся в нем
воды во второй и т. д. Докажите, что независимо от того, сколько
воды было сначала в каждом из сосудов, после 100 переливаний в
них будет
Пусть $M$ – середина гипотенузы $AB$ прямоугольного треугольника $ABC$. Окружность, проходящая через $C$ и $M$, пересекает прямые $BC$ и $AC$ в точках $P$ и $Q$ соответственно. Пусть $c_1, c_2$ – окружности с центрами $P$, $Q$ и радиусами $BP$, $AQ$ соответственно. Докажите, что $c_1$, $c_2$ и описанная окружность треугольника $ABC$ проходят через одну точку. В кооперативе из 11 человек имеется партячейка. На каждом собрании ячейки происходит либо приём одного члена в партию, либо исключение из партии одного человека. В партячейке не может быть меньше трёх человек. Возвращаться к какому-либо из прежних составов партячейки запрещено уставом. Может ли к какому-то моменту оказаться, что все варианты состава ячейки реализованы? В остроугольном треугольнике АВС биссектриса AN, высота BH и прямая, перпендикулярная стороне АВ и проходящая через ее середину, пересекаются в одной точке. Найдите угол ВАС. На сторонах AB, BC, CD, DA квадрата ABCD взяты соответственно точки N, K, L, M, делящие эти стороны в одном и том же отношении (при обходе по часовой стрелке). Докажите, что KLMN – также квадрат.
Окружность, вписанная в прямоугольный треугольник с катетами 6 и 8, касается гипотенузы в точке M. Найдите расстояние от точки M до вершины прямого угла.
Дан треугольник ABC и точка P. Точки A', B', C' – проекции P на прямые BC, CA, AB. Прямая, проходящая через P и параллельная AB, вторично пересекает описанную окружность треугольника PA'B' в точке C1. Точки A1, B1 определены аналогично. Докажите, что Отрезок, соединяющий середины двух противоположных сторон выпуклого четырёхугольника, равен полусумме двух других сторон. Сколькими способами можно сделать трёхцветный флаг с горизонтальными полосами одинаковой ширины, если имеется материя шести различных цветов? |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 171]
В ботаническом справочнике каждое растение характеризуется 100 признаками
(каждый признак либо присутствует, либо отсутствует). Растения считаются
непохожими, если они различаются не менее, чем по 51 признаку.
m и n – натуральные числа, m < n. Докажите, что
В школе изучают 2n предметов. Все ученики учатся на 4 и 5. Никакие два
ученика не учатся одинаково, ни про каких двух нельзя сказать, что один из них
учится лучше другого. Доказать, что число учеников в школе не больше
Сколькими способами можно сделать трёхцветный флаг с горизонтальными полосами одинаковой ширины, если имеется материя шести различных цветов?
На полке стоят пять книг. Сколькими способами можно выложить в стопку несколько из них (стопка может состоять и из одной книги)?
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 171]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке