|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Кузнечик прыгает по числовой прямой, на которой отмечены точки $-a$ и $b$. Известно, что $a$ и $b$ — положительные числа, а их отношение иррационально. Если кузнечик находится в точке, которая ближе к $-a$, то он прыгает вправо на расстояние, равное $a$. Если же он находится в середине отрезка $[-a;b]$ или в точке, которая ближе к $b$, то он прыгает влево на расстояние, равное $b$. Докажите, что независимо от своего начального положения кузнечик в некоторый момент окажется от точки 0 на расстоянии, меньшем $10^{-6}$. С ненулевым числом разрешается проделывать следующие операции: x На сторонах AB и BC равностороннего треугольника ABC отмечены точки L и K соответственно, M – точка пересечения отрезков AK и CL. Известно, что площадь треугольника AMC равна площади четырёхугольника LBKM. Найдите угол AMC. Середину более длинной боковой стороны прямоугольной трапеции соединили с вершинами трапеции. При этом трапеция разделилась на три равнобедренных треугольника. Найдите величину острого угла трапеции. Плоский угол при вершине правильной треугольной пирамиды ABCD с основанием ABC равен α . Правильная усечённая пирамида ABCA1B1C1 разрезана по пяти рёбрам: A1B1 , B1C1 , C1C , CA и AB . После чего эту пирамиду развернули на плоскость. При каких значениях α получившаяся развёртка будет обязательно накрывать сама себя? а) Сколькими способами можно разбить 15 человек на три команды по пять человек в каждой? |
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 171]
Анаграммой называется произвольное слово, полученное из данного слова
перестановкой букв. Сколько анаграмм можно составить из слов:
10 друзей послали друг другу праздничные открытки, так что каждый послал
пять открыток.
а) Сколькими способами можно разбить 15 человек на три команды по пять человек в каждой?
Сколькими способами три человека могут разделить между собой шесть одинаковых яблок, один апельсин, одну сливу и один мандарин?
Сколькими способами четыре чёрных шара, четыре белых шара и четыре синих шара можно разложить в шесть различных ящиков?
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 171] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|