Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Докажите, что геометрическая прогрессия {an} = bx0n удовлетворяет соотношению (11.2 ) тогда и только тогда, когда x0 -- корень характеристического уравнения (11.3 ) последовательности {an}.

Вниз   Решение


На сторонах BC и CD квадрата ABCD взяты точки M и K соответственно, причем $ \angle$BAM = $ \angle$MAK. Докажите, что BM + KD = AK.

ВверхВниз   Решение


Ось симметрии многоугольника пересекает его стороны в точках A и B. Докажите, что точка A является либо вершиной многоугольника, либо серединой стороны, перпендикулярной оси симметрии.

ВверхВниз   Решение


Четырехугольник имеет ось симметрии. Докажите, что этот четырехугольник либо является равнобедренной трапецией, либо симметричен относительно диагонали.

ВверхВниз   Решение


Пусть  x = ab + bc + ca, x1 = mamb + mbmc + mcma. Докажите, что  9/20 < x1/x < 5/4.

ВверхВниз   Решение


Две высоты треугольника больше 1. Докажите, что его площадь больше 1/2.

ВверхВниз   Решение


Два квадрата BCDA и BKMN имеют общую вершину B. Докажите, что медиана BE треугольника ABK и высота BF треугольника CBN лежат на одной прямой. (Вершины обоих квадратов перечислены по часовой стрелке.)

ВверхВниз   Решение


Докажите, что если фигура имеет две перпендикулярные оси симметрии, то она имеет центр симметрии.

ВверхВниз   Решение


В треугольнике ABC проведены медиана CM и высота CH. Прямые, проведенные через произвольную точку P плоскости перпендикулярно CA, CM и CB, пересекают прямую CH в точках A1, M1 и B1. Докажите, что A1M1 = B1M1.

ВверхВниз   Решение


Точка M лежит на диаметре AB окружности. Хорда CD окружности проходит через точку M и пересекает прямую AB под углом в 45°.
Докажите, что величина  CM² + DM²  не зависит от выбора точки M.

ВверхВниз   Решение


В треугольнике ABC высота AM не меньше BC, а высота BH не меньше AC. Найдите углы треугольника ABC.

ВверхВниз   Решение


Внутри квадрата A1A2A3A4 взята точка P. Из вершины A1 опущен перпендикуляр на A2P, из A2 — перпендикуляр на A3P, из A3 — на A4P, из A4 — на A1P. Докажите, что все четыре перпендикуляра (или их продолжения) пересекается в одной точке.

ВверхВниз   Решение


Труппа театра состоит из 20 артистов. Сколькими способами можно выбрать из неё в течение двух вечеров по шесть человек для участия в спектаклях так, чтобы ни один артист не участвовал в двух спектаклях?

Вверх   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 171]      



Задача 30740

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 2
Классы: 7,8

Труппа театра состоит из 20 артистов. Сколькими способами можно выбрать из неё в течение двух вечеров по шесть человек для участия в спектаклях так, чтобы ни один артист не участвовал в двух спектаклях?

Прислать комментарий     Решение

Задача 30746

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 2
Классы: 7,8

Ладья стоит на левом поле клетчатой полоски 1×30 и за ход может сдвинуться на любое количество клеток вправо.
  а) Сколькими способами она может добраться до крайнего правого поля?
  б) Сколькими способами она может добраться до крайнего правого поля ровно за семь ходов?

Прислать комментарий     Решение

Задача 102999

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Сочетания и размещения ]
Сложность: 2
Классы: 5,6,7

  – У меня зазвонил телефон.
  – Кто говорит?
  – Слон.
  А потом позвонил Крокодил, а потом позвонили Зайчатки, а потом позвонили Мартышки, а потом позвонил Медведь, а потом позвонили Цапли... Итак, у Слона, Крокодила, Зайчаток, Мартышек, Медведя, Цапель и у меня установлены телефоны. Каждые два телефонных аппарата соединены проводом. Cколько для этого понадобилось проводов?

Прислать комментарий     Решение

Задача 30330

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
[ Перестановки и подстановки ]
Сложность: 2+
Классы: 7,8,9

Слово – любая конечная последовательность букв русского алфавита. Выясните, сколько различных слов можно составить из слов
  а) ВЕКТОР;
  б) ЛИНИЯ;
  в) ПАРАБОЛА;
  г) БИССЕКТРИСА;
  д) МАТЕМАТИКА.

Прислать комментарий     Решение

Задача 30696

Темы:   [ Задачи с ограничениями ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8

Сколькими способами можно выбрать из 15 различных слов набор, состоящий не более чем из пяти слов?

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 171]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .