ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Докажите, что геометрическая прогрессия
{an} = bx0n
удовлетворяет соотношению (11.2
) тогда и только тогда,
когда x0
-- корень характеристического уравнения (11.3
) последовательности
{an}.
На сторонах BC и CD квадрата ABCD взяты точки M
и K соответственно, причем
Ось симметрии многоугольника пересекает его стороны
в точках A и B. Докажите, что точка A является либо
вершиной многоугольника, либо серединой стороны, перпендикулярной
оси симметрии.
Четырехугольник имеет ось симметрии. Докажите, что
этот четырехугольник либо является равнобедренной трапецией,
либо симметричен относительно диагонали.
Пусть
x = ab + bc + ca, x1 = mamb + mbmc + mcma. Докажите,
что
9/20 < x1/x < 5/4.
Две высоты треугольника больше 1. Докажите, что его
площадь больше 1/2.
Два квадрата BCDA и BKMN имеют общую вершину B.
Докажите, что медиана BE треугольника ABK и высота BF
треугольника CBN лежат на одной прямой. (Вершины
обоих квадратов перечислены по часовой стрелке.)
Докажите, что если фигура имеет две перпендикулярные
оси симметрии, то она имеет центр симметрии.
В треугольнике ABC проведены медиана CM и высота CH.
Прямые, проведенные через произвольную точку P плоскости
перпендикулярно CA, CM и CB, пересекают прямую CH
в точках A1, M1 и B1. Докажите, что
A1M1 = B1M1.
Точка M лежит на диаметре AB окружности. Хорда CD
окружности проходит через точку M и пересекает прямую AB под
углом в 45°. В треугольнике ABC высота AM не меньше BC, а
высота BH не меньше AC. Найдите углы треугольника ABC.
Внутри квадрата A1A2A3A4 взята точка P. Из вершины A1 опущен перпендикуляр на A2P, из A2 — перпендикуляр на A3P, из A3 — на A4P, из A4 — на A1P. Докажите, что все четыре перпендикуляра (или их продолжения) пересекается в одной точке.
Труппа театра состоит из 20 артистов. Сколькими способами можно выбрать из неё в течение двух вечеров по шесть человек для участия в спектаклях так, чтобы ни один артист не участвовал в двух спектаклях? |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 171]
Труппа театра состоит из 20 артистов. Сколькими способами можно выбрать из неё в течение двух вечеров по шесть человек для участия в спектаклях так, чтобы ни один артист не участвовал в двух спектаклях?
Ладья стоит на левом поле клетчатой полоски 1×30 и за ход может сдвинуться на любое количество клеток вправо.
– У меня зазвонил телефон.
Слово – любая конечная последовательность букв русского алфавита. Выясните, сколько различных слов можно составить из слов
Сколькими способами можно выбрать из 15 различных слов набор, состоящий не более чем из пяти слов?
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 171]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке