Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Докажите, что у четырёхугольника, вписанного в окружность, суммы противоположных углов равны 180o.

Вниз   Решение


Найдите углы четырёхугольника ABCD, вершины которого расположены на окружности, если  ∠ABD = 74°,  ∠DBC = 38°,  ∠BDC = 65°.

ВверхВниз   Решение


Можно ли описать окружность около четырёхугольника, углы которого по порядку относятся как: а) 2:4:5:3; б) 5:7:8:9?

ВверхВниз   Решение


Три последовательных угла вписанного четырёхугольника относятся как 1:2:3. Найдите все углы четырёхугольника.

ВверхВниз   Решение


Биллиард имеет форму выпуклого четырехугольника ABCD. Из точки K стороны AB выпустили биллиардный шар, который отразился в точках L, M, N от сторон BC, CD, DA, возвратился в точку K и вновь вышел на траекторию KLMN. Докажите, что четырехугольник ABCD можно вписать в окружность.

ВверхВниз   Решение


Докажите, что произведение любых трёх последовательных натуральных чисел делится на 6.

ВверхВниз   Решение


На затонувшей каравелле XIV века были найдены шесть мешков с золотыми монетами. В первых четырёх мешках оказалось по 60, 30, 20 и 15 золотых монет. Когда подсчитали монеты в оставшихся двух, кто-то заметил, что число монет в мешках составляет некую последовательность. Приняв это к сведению, смогли бы вы сказать, сколько монет в пятом и шестом мешках?

ВверхВниз   Решение


a, b, c, d – положительные числа. Докажите, что по крайней мере одно из неравенств
  1)  a + b < c + d;
  2)  (a + b)cd < ab(c + d);
  3)  (a + b)(c + d) < ab + cd
неверно.

ВверхВниз   Решение


На сторонах AB и AC треугольника ABC выбрали точки P и Q так, что  PB = QC.  Докажите, что  PQ < BC.

ВверхВниз   Решение


Что больше:  1234567·1234569  или  1234568²?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 100]      



Задача 116021

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Найдите наибольшее натуральное n, при котором  n200 < 5300.

Прислать комментарий     Решение

Задача 30850

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 7,8

Что больше:  1234567·1234569  или  1234568²?

Прислать комментарий     Решение

Задача 30851

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 7,8

Что больше:  10...01/10...01  (в записи числа в числителе – 1984 нуля, в знаменателе – 1985) или  10...01/10...01  (в числителе – 1985 нулей, в знаменателе – 1986).

Прислать комментарий     Решение

Задача 30853

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 7,8

Какое число больше:  100100 или 5050·15050?

Прислать комментарий     Решение

Задача 30856

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Произведения и факториалы ]
Сложность: 2+
Классы: 7,8

Если к числу 100 применить 99 раз операцию "факториал", то получится число A. Если к числу 99 применить 100 раз операцию "факториал", то получится число B. Какое из этих двух чисел больше?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .