ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Назовём натуральное число n удобным, если n² + 1 делится на 1000001. Докажите, что среди чисел 1, 2, ..., 1000000 чётное число удобных. Доказать, что в произведении (1 – x + x² – x³ + ... – x99 + x100)(1 + x + x² + x³ + ... + x99 + x100) после раскрытия скобок и приведения подобных членов не остаётся членов, содержащих x в нечётной степени. Пусть an – число решений уравнения x1 + ... + xk = n в целых неотрицательных числах и F(x) – производящая функция последовательности an. Найдите производящие функции последовательностей многочленов Чебышева первого и второго рода:
а) Найдите производящую функцию последовательности чисел Люка (определение чисел Люка смотри в задаче 60585) б) Пользуясь этой функцией, выразите Ln через φ и
Найдите производящие функции последовательности многочленов Фибоначчи F(x, z) = F0(x) + F1(x)z + F2(x)z² + ... + Fn(x)zn + ...
Берутся всевозможные непустые подмножества из множества чисел 1, 2, 3, ..., n. Для каждого подмножества берётся величина, обратная к произведению всех его чисел. Найти сумму всех таких обратных величин. а) Дан осесимметричный выпуклый 101-угольник. Докажите, что ось симметрии проходит через одну из его вершин. Доказать, что любая ось симметрии 45-угольника проходит через его вершину. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 629]
Чётными или нечётными будут сумма и произведение:
Можно ли доску размером 5×5 заполнить доминошками размером 1×2?
а) Дан осесимметричный выпуклый 101-угольник. Докажите, что ось симметрии проходит через одну из его вершин.
Доказать, что любая ось симметрии 45-угольника проходит через его вершину.
Чётно или нечётно число 1 + 2 + 3 + ... + 1990?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 629]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке