ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Автобусные билеты имеют номера от 000000 до 999999. Билет называется счастливым, если сумма первых трёх цифр его номера равна сумме последних трёх его цифр. Докажите, что: |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 1221]
Автобусные билеты имеют номера от 000000 до 999999. Билет называется счастливым, если сумма первых трёх цифр его номера равна сумме последних трёх его цифр. Докажите, что:
а) На отрезке [0, 1] задано такое множество M, являющееся объединением нескольких отрезков, что расстояние между любыми двумя точками из M не равно 1/10. Докажите, что сумма длин отрезков, составляющих M, не больше ½. б) Верно ли это же утверждение, если заменить 1/10 на ⅕?
Пусть p – простое число, большее 2, а m/n = 1 + ½ + ⅓ + ... + 1/p–1. Докажите, что m делится на p.
Какое наибольшее количество непересекающихся диагоналей можно провести в выпуклом n-угольнике (допускаются диагонали, имеющие общую вершину)?
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 1221] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|