ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи За круглым столом сидело а) 15; б) 20 человек. Они хотят пересесть так, чтобы те, кто раньше сидел рядом, теперь сидели бы через два человека. Возможно ли это? Решение |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 1221]
Автобусные билеты имеют номера от 000000 до 999999. Билет называется счастливым, если сумма первых трёх цифр его номера равна сумме последних трёх его цифр. Докажите, что:
а) На отрезке [0, 1] задано такое множество M, являющееся объединением нескольких отрезков, что расстояние между любыми двумя точками из M не равно 1/10. Докажите, что сумма длин отрезков, составляющих M, не больше ½. б) Верно ли это же утверждение, если заменить 1/10 на ⅕?
Пусть p – простое число, большее 2, а m/n = 1 + ½ + ⅓ + ... + 1/p–1. Докажите, что m делится на p.
Какое наибольшее количество непересекающихся диагоналей можно провести в выпуклом n-угольнике (допускаются диагонали, имеющие общую вершину)?
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 1221] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|