ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На круглом столе через равные промежутки лежат пирожные. Игорь ходит вокруг стола и съедает каждое третье встреченное пирожное (каждое пирожное может быть встречено несколько раз). Когда на столе не осталось пирожных, он заметил, что последним взял пирожное, которое встретил первым, и прошёл ровно семь кругов вокруг стола. Сколько было пирожных?

   Решение

Задачи

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 1221]      



Задача 32103

Темы:   [ Четность и нечетность ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 5,6,7,8,9

На турнире им. Ломоносова в институте МИМИНО были конкурсы по математике, физике, химии, биологии и бальным танцам. Когда турнир закончился, выяснилось, что на каждом конкурсе побывало нечётное количество школьников, и каждый школьник участвовал в нечётном количестве конкурсов. Чётное или нечётное число школьников пришло на турнир в МИМИНО?

Прислать комментарий     Решение

Задача 32837

Темы:   [ Неравенство треугольника (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 7,8,9

В Москве живет 2000 скалолазов, в Санкт-Петербурге и Красноярске — по 500, в Екатеринбурге — 200, а остальные 100 рассеяны по территории России. Где нужно устроить чемпионат России по скалолазанию, чтобы транспортные расходы участников были минимальны?
Прислать комментарий     Решение


Задача 32856

Темы:   [ Дроби (прочее) ]
[ Процессы и операции ]
Сложность: 3
Классы: 7

Имеется необычный калькулятор. При включении калькулятора на экране возникает дробь 1/1. При нажатии на кнопку * к числителю дроби, изображенной на экране, прибавляется знаменатель, а знаменатель остается прежним. При нажатии на кнопку $ числитель и знаменатель дроби меняются местами. Других кнопок на калькуляторе нет.
  а) Что покажет калькулятор после выполнения следующей последовательности команд:  $ * * * * * * * * * * $ ?
Как добиться того, чтобы калькулятор показал:
  б) 1/2,   в) 7/3,   г) 4/11,   д) 57/91 ?

Прислать комментарий     Решение

Задача 32891

Темы:   [ Процессы и операции ]
[ Итерации ]
Сложность: 3
Классы: 7,8,9

На круглом столе через равные промежутки лежат пирожные. Игорь ходит вокруг стола и съедает каждое третье встреченное пирожное (каждое пирожное может быть встречено несколько раз). Когда на столе не осталось пирожных, он заметил, что последним взял пирожное, которое встретил первым, и прошёл ровно семь кругов вокруг стола. Сколько было пирожных?

Прислать комментарий     Решение

Задача 34924

Темы:   [ Теория игр (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3

На шахматной доске стоит фишка. Двое по очереди передвигают фишку на соседнюю по стороне клетку. При этом запрещается ставить фишку на поле, где она уже побывала. Проигрывает тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре?

Прислать комментарий     Решение

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .