ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости дана несамопересекающаяся замкнутая ломаная, никакие три вершины которой не лежат на одной прямой. Назовём пару несоседних звеньев особой, если продолжение одного из них пересекает другое звено. Докажите, что число особых пар чётно.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 1221]      



Задача 32898

Темы:   [ Процессы и операции ]
[ Инварианты ]
Сложность: 3+
Классы: 8,9,10

На длинной скамейке сидели мальчик и девочка. К ним по одному подошли еще 20 детей, и каждый из них садился между какими-то двумя уже сидящими. Назовём девочку отважной, если она садилась между двумя соседними мальчиками, а мальчика – отважным, если он садился между двумя соседними девочками. Когда все сели, оказалось, что мальчики и девочки сидят на скамейке, чередуясь. Сколько из них были отважными?

Прислать комментарий     Решение

Задача 34925

Темы:   [ Подсчет двумя способами ]
[ Ломаные ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

На плоскости дана несамопересекающаяся замкнутая ломаная, никакие три вершины которой не лежат на одной прямой. Назовём пару несоседних звеньев особой, если продолжение одного из них пересекает другое звено. Докажите, что число особых пар чётно.

Прислать комментарий     Решение

Задача 35362

Темы:   [ Подсчет двумя способами ]
[ Деревья ]
Сложность: 3+
Классы: 7,8

У Царя Гвидона было 5 сыновей. Среди его потомков 100 имели каждый ровно по 3 сына, а остальные умерли бездетными.
Сколько потомков было у царя Гвидона?

Прислать комментарий     Решение

Задача 35488

Темы:   [ Подсчет двумя способами ]
[ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3+
Классы: 7,8

На шахматной доске расставлены 8 ладей так, что они не бьют друг друга.
Докажите, что на полях чёрного цвета расположено чётное число ладей.

Прислать комментарий     Решение

Задача 60661

Темы:   [ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 7,8,9,10

Назовём шестизначное число счастливым, если сумма его первых трёх цифр равна сумме последних трёх цифр. Докажите, что сумма всех счастливых чисел делится на 13. (Числа, записываемые менее, чем шестью цифрами, в этой задаче также считаются шестизначными.)

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .