ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости нарисовано несколько прямых (не меньше двух), никакие две из которых не параллельны и никакие три не проходят через одну точку. Докажите, что среди частей, на которые эти прямые делят плоскость, найдется хотя бы один угол.

   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 1341]      



Задача 35110

Темы:   [ Плоскость, разрезанная прямыми ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 3
Классы: 8,9,10

На плоскости нарисовано несколько прямых (не меньше двух), никакие две из которых не параллельны и никакие три не проходят через одну точку. Докажите, что среди частей, на которые эти прямые делят плоскость, найдется хотя бы один угол.
Прислать комментарий     Решение


Задача 35132

Темы:   [ Системы точек ]
[ Соображения непрерывности ]
Сложность: 3
Классы: 8,9

На плоскости отмечено 2000 точек. Можно ли провести прямую, по каждую сторону от которой лежит 1000 точек?

Прислать комментарий     Решение

Задача 35157

Тема:   [ Теорема о группировке масс ]
Сложность: 3
Классы: 9,10

Из круга S радиуса 1 вырезали круг S' радиуса 1/2, граница которого проходит через центр исходного круга. Определите, где находится центр тяжести полученной фигуры F.
Прислать комментарий     Решение


Задача 35321

Тема:   [ Разные задачи на разрезания ]
Сложность: 3
Классы: 8,9,10

Внутри круга нарисована точка. Покажите, что можно разрезать круг на две части так, чтобы из них можно было составить круг, в котором отмеченная точка являлась бы центром.
Прислать комментарий     Решение


Задача 35452

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Перенос помогает решить задачу ]
Сложность: 3
Классы: 8,9,10

На отрезке длины 1 отмечено несколько интервалов. Известно, что расстояние между любыми двумя точками, принадлежащими одному или разным интервалам, отлично от 0,1. Докажите, что сумма длин отмеченных интервалов не превосходит 0,5.
Прислать комментарий     Решение


Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 1341]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .