Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 1341]
|
|
Сложность: 3- Классы: 6,7,8,9
|
Есть три треугольника: остроугольный, прямоугольный и тупоугольный. Саша взял
себе один треугольник, а Боря – два оставшихся. Оказалось, что Боря может приложить (без наложения) один из своих треугольников к другому, и получить треугольник, равный Сашиному. Какой из этих треугольников взял Саша?
Квадрат 8×8 распилили на квадраты 2×2 и прямоугольники 1×4. При этом общая длина распилов оказалась равна 54.
Сколько фигурок каждого вида получилось?
|
|
Сложность: 3- Классы: 7,8,9
|
В какое наибольшее количество цветов можно раскрасить клетки шахматной доски 8×8 так, чтобы каждая клетка граничила по стороне хотя бы с двумя клетками того же цвета?
Квадрат разрезали на несколько частей. Переложив эти части, из них всех сложили треугольник. Затем к этим частям добавили еще одну фигурку – и оказалось, что и из нового набора фигурок можно сложить как квадрат, так и треугольник. Покажите, как такое могло бы произойти (нарисуйте, как именно эти два квадрата и два треугольника могли бы быть составлены из фигурок).
|
|
Сложность: 3- Классы: 7,8,9
|
Разрежьте квадрат 4×4 по линиям сетки на 9 прямоугольников так, чтобы равные прямоугольники не соприкасались ни сторонами, ни вершинами.
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 1341]