|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Ребро AB тетраэдра ABCD является диагональю основания четырёхугольной пирамиды, ребро CD параллельно другой диагонали этого основания, и концы его лежат на боковых рёбрах пирамиды. Найдите наименьший возможный объём пирамиды, если объём тетраэдра равен V . Докажите, что не существует многочлена (степени больше нуля) с целыми коэффициентами, принимающего при каждом натуральном значении аргумента значение, равное некоторому простому числу. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 81]
Докажите, что не существует многочлена (степени больше нуля) с целыми коэффициентами, принимающего при каждом натуральном значении аргумента значение, равное некоторому простому числу.
Докажите, что не существует многочлена степени не ниже двух с целыми неотрицательными коэффициентами, значение которого при любом простом p является простым числом.
Приведённый квадратный трёхчлен с целыми коэффициентами в трёх последовательных
целых точках принимает простые значения.
Докажите, что для любого многочлена P с целыми коэффициентами и любого натурального k существует такое натуральное n, что P(1) + P(2) + ... + P(n) делится на k.
Докажите, что если многочлен f(x) степени n принимает целые значения в точках x = 0, 1, ..., n, то он принимает целые значения во всех целых точках.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 81] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|