ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

В квадрат ABCD со стороной a вписана окружность, которая касается стороны CD в точке E.
Найдите хорду, соединяющую точки, в которых окружность пересекается с прямой AE.

Вниз   Решение


Две окружности пересекаются в точках A и B. К этим окружностям проведена общая касательная, которая касается окружностей в точках C и D. Докажите, что прямая AB делит отрезок CD пополам.

ВверхВниз   Решение


Каждое ребро выпуклого многогранника параллельно перенесли на некоторый вектор так, что ребра образовали каркас нового выпуклого многогранника. Обязательно ли он равен исходному?

ВверхВниз   Решение


В треугольнике ABC проведены высоты BB1 и CC1. Докажите, что если  ∠A = 45°,  то B1C1 – диаметр окружности девяти точек треугольника ABC.

ВверхВниз   Решение


B остроугольном треугольнике ровно один из углов равен 60°. Докажите, что прямая, проходящая через центр описанной окружности и точку пересечения медиан треугольника, отсекает от него равносторонний треугольник.

ВверхВниз   Решение


Набор из 2003 положительных чисел таков, что для любых двух входящих в него чисел a и b ( a>b ) хотя бы одно из чисел a+b или a-b тоже входит в набор. Докажите, что если данные числа упорядочить по возрастанию, то разности между соседними числами окажутся одинаковыми.

ВверхВниз   Решение


На доске написаны числа 1, 2, 3, ..., 1989. Разрешается стереть любые два числа и написать вместо них разность этих чисел.
Можно ли добиться того, чтобы все числа на доске стали нулями?

ВверхВниз   Решение


В остроугольном треугольнике ABC проведены биссектриса AD и высота BE. Докажите, что  ∠CED > 45°.

ВверхВниз   Решение


Докажите, что sin($ \gamma$/2) $ \leq$ c/(a + b).

ВверхВниз   Решение


Петя подсчитал количество всех возможных m-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2m-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.)

ВверхВниз   Решение


Существуют ли нецелые числа x и y, для которых  {x}{y} = {x + y}?

ВверхВниз   Решение


Наибольший угол остроугольного треугольника в пять раз больше наименьшего.
Найдите углы этого треугольника, если известно, что все они выражаются целым числом градусов.

ВверхВниз   Решение


В некотором царстве живут маги, чародеи и волшебники. Про них известно следующее: во-первых, не все маги являются чародеями, во-вторых, если волшебник не является чародеем, то он не маг. Правда ли, что не все маги -- волшебники?

ВверхВниз   Решение


Из точки M, расположенной вне окружности на расстоянии от центра, проведена секущая, внутренняя часть которой вдвое меньше внешней и равна радиусу окружности.
Найдите радиус окружности.

ВверхВниз   Решение


Из круга S радиуса 1 вырезали круг S' радиуса 1/2, граница которого проходит через центр исходного круга. Определите, где находится центр тяжести полученной фигуры F.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 27]      



Задача 57750

Тема:   [ Теорема о группировке масс ]
Сложность: 2
Классы: 9

Докажите, что медианы треугольника ABC пересекаются в одной точке и делятся ею в отношении 2 : 1, считая от вершины.
Прислать комментарий     Решение


Задача 78070

Тема:   [ Теорема о группировке масс ]
Сложность: 3-
Классы: 10,11

В выпуклом четырехугольнике ABCD взят четырехугольник KLMN, образованный центрами тяжести треугольников ABC, BCD, DBA и CDA. Доказать, что прямые, соединяющие середины противоположных сторон четырехугольника ABCD, пересекаются в той же точке, что и прямые, соединяющие середины противоположных сторон четырехугольника KLMN.
Прислать комментарий     Решение


Задача 35157

Тема:   [ Теорема о группировке масс ]
Сложность: 3
Классы: 9,10

Из круга S радиуса 1 вырезали круг S' радиуса 1/2, граница которого проходит через центр исходного круга. Определите, где находится центр тяжести полученной фигуры F.
Прислать комментарий     Решение


Задача 57752

Тема:   [ Теорема о группировке масс ]
Сложность: 3+
Классы: 9

Пусть A1, B1,..., F1 — середины сторон AB, BC,..., FA произвольного шестиугольника. Докажите, что точки пересечения медиан треугольников A1C1E1 и B1D1F1 совпадают.
Прислать комментарий     Решение


Задача 57751

Темы:   [ Теорема о группировке масс ]
[ Выпуклые многоугольники ]
[ Четырехугольники (прочее) ]
Сложность: 4-
Классы: 8,9,10

Пусть ABCD — выпуклый четырехугольник, K, L, M и N — середины сторон AB, BC, CD и DA. Докажите, что точка пересечения отрезков KM и LN является серединой этих отрезков, а также и серединой отрезка, соединяющего середины диагоналей.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 >> [Всего задач: 27]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .