|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В банде 101 террорист. Все вместе они в вылазках ни разу не участвовали, а
каждые двое встречались в вылазках ровно по разу. Пусть H - точка пересечения высот в треугольнике ABC. Докажите, что если провести прямые, симметричные прямым AH, BH, CH относительно биссектрис углов A, B, C, то эти прямые пересекутся в центре O описанной окружности треугольника ABC. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]
Существует ли прямоугольный треугольник, в котором две медианы перпендикулярны?
Высота AK, биссектриса BL и медиана CM треугольника АВС пересекаются в точке О, причём АО = ВО.
В треугольнике АВС из вершин А и В проведены биссектрисы, а из вершины С – медиана. Оказалось, что точки их попарного пересечения образуют прямоугольный равнобедренный треугольник. Найдите углы треугольника АВС.
Верно ли, что в любом треугольнике точка пересечения медиан лежит внутри треугольника, образованного основаниями биссектрис?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|