ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существуют ли такие 100 квадратных трёхчленов, что каждый из них имеет два корня, а сумма любых двух из них корней не имеет?

   Решение

Задачи

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 965]      



Задача 66530

Темы:   [ Разложение на множители ]
[ Признаки делимости (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Шноль Д.Э.

Найдите наименьшее натуральное число n, для которого n2 + 20n + 19 делится на 2019.
Прислать комментарий     Решение


Задача 66897

Темы:   [ Квадратный трехчлен (прочее) ]
[ Целая и дробная части. Принцип Архимеда ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3+
Классы: 8,9,10,11

Как известно, квадратное уравнение имеет не более двух корней. А может ли уравнение $[x^2] + px + q = 0$ при $p \ne 0$ иметь более 100 корней? ($[x^2]$ обозначает наибольшее целое число, не превосходящее $x^2$.)
Прислать комментарий     Решение


Задача 35377

Темы:   [ Квадратный трехчлен (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Свойства модуля. Неравенство треугольника ]
Сложность: 4-
Классы: 9,10,11

Существуют ли такие 100 квадратных трёхчленов, что каждый из них имеет два корня, а сумма любых двух из них корней не имеет?

Прислать комментарий     Решение

Задача 35762

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 4-
Классы: 8,9

Квадратный трёхчлен  ax² + bx + c  имеет два действительных корня. Верно ли, что трёхчлен  a101x² + b101x + c101  также имеет два действительных корня?

Прислать комментарий     Решение

Задача 60935

Темы:   [ Квадратный трехчлен (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 9,10,11

Рассмотрим графики функций  y = x² + px + q,  которые пересекают оси координат в трёх различных точках.
Докажите, что все окружности, описанные около треугольников с вершинами в этих точках, имеют общую точку.

Прислать комментарий     Решение

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .