Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

В прямоугольном треугольнике ABC угол ACB – прямой. Пусть E – точка пересечения биссектрисы угла ABC со стороной AC. Точка D – середина стороны AB,  O – точка пересечения отрезков BE и CD. Через точку O проведён перпендикуляр к BO до пересечения со стороной BC в точке F. Известно, что
FC = b,  OC = 3b/2.  Найдите площадь треугольника ABC.

Вниз   Решение


На клетчатой доске размером 23×23 клетки стоят четыре фишки: в левом нижнем и в правом верхнем углах доски – по белой фишке, а в левом верхнем и в правом нижнем углах - по чёрной. Белые и чёрные фишки ходят по очереди, начинают белые. Каждым ходом одна из фишек сдвигается на любую соседнюю (по стороне) свободную клетку. Белые фишки стремятся попасть в две соседние по стороне клетки. Могут ли чёрные им помешать?

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы AD и BE. Найдите величину угла C, если известно, что  AD . BC = BE . AC и AC$ \ne$BC.

ВверхВниз   Решение


Пусть p – простое число и представление числа n в p-ичной системе имеет вид:   n = akpk + ak–1pk–1 + ... + a1p1 + a0.
Найдите формулу, выражающую показатель αp, с которым это число p входит в каноническое разложение n!, через n, p, и коэффициенты ak.

ВверхВниз   Решение


На полях A, B и C в левом нижнем углу шахматной доски стоят белые ладьи (см. рис.). Разрешается делать ходы по обычным правилам, однако после любого хода каждая ладья должна быть под защитой какой-нибудь другой ладьи. Можно ли за несколько ходов переставить ладьи так, чтобы каждая попала на обозначенное той же буквой поле в правом верхнем углу?

ВверхВниз   Решение


В остроугольном треугольнике ABC на высоте AD взята точка M, а на высоте BP – точка N так, что углы BMC и ANC – прямые. Расстояние между точками M и N равно  4 + 2,  угол MCN равен 30°. Найдите биссектрису CL треугольника CMN.

ВверхВниз   Решение


Даны отрезки a и b. С помощью циркуля и линейки постройте отрезок $ \sqrt{ab}$.

ВверхВниз   Решение


Автор: Mahdi Etesami Fard

В прямоугольном треугольнике ABC точка D – середина высоты, опущенной на гипотенузу AB. Прямые, симметричные AB относительно AD и BD, пересекаются в точке F. Найдите отношение площадей треугольников ABF и ABC.

ВверхВниз   Решение


В трапеции ABCD точки K и M являются соответственно серединами оснований AB = 5 и CD = 3. Найдите площадь трапеции, если треугольник AMB — прямоугольный, а DK — высота трапеции.

ВверхВниз   Решение


Высота CD треугольника ABC делит сторону AB на отрезки AD и BD, причём AD . BD = CD2. Верно ли, что треугольник ABC прямоугольный?

ВверхВниз   Решение


В прямоугольный треугольник вписан квадрат так, что одна из его сторон находится на гипотенузе. Боковые отрезки гипотенузы равны m и n. Найдите площадь квадрата.

ВверхВниз   Решение


Доказать, что если целое  n > 1,  то  11·2²·3³·...·nn < nn(n+1)/2.

ВверхВниз   Решение


На отрезке AC взята точка B. На AB и AC как на диаметрах построены окружности. К отрезку AC в точке B проведён перпендикуляр BD до пересечения с большей окружностью в точке D. Из точки C проведена касательная CK к меньшей окружности. Докажите, что CD = CK.

ВверхВниз   Решение


Может ли некоторое сечение куба быть правильным пятиугольником?

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 [Всего задач: 65]      



Задача 86955

Темы:   [ Параллелепипеды (прочее) ]
[ Построения на проекционном чертеже ]
[ Параллельность прямых и плоскостей ]
Сложность: 4
Классы: 10,11

На ребре $AD$ и диагонали $A_1C$ параллелепипеда $ABCDA_1B_1C_1D_1$ взяты соответственно точки $M$ и $N$, причём прямая $MN$ параллельна плоскости $BDC_1$ и $AM:AD = 1:5$. Найдите отношение $CN:CA_1$.
Прислать комментарий     Решение


Задача 115940

Темы:   [ Отношение объемов ]
[ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
Сложность: 4
Классы: 10,11

В основании пирамиды объёма V лежит трапеция с основаниями m и n . Плоскость отсекает от неё пирамиду объёма U , а в сечении получается снова трапеция с основаниями m1 и n1 . Докажите, что = .
Прислать комментарий     Решение


Задача 87273

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Построения на проекционном чертеже ]
[ Параллельность прямых и плоскостей ]
Сложность: 4
Классы: 10,11


Сфера радиуса 4 с центром в точке Q касается трех параллельных прямых в точках F, G и H. Известно, что площадь треугольника QGH равна 4$ \sqrt{2}$, а площадь треугольника FGH больше 16. Найдите угол GFH.

Прислать комментарий     Решение


Задача 35505

Темы:   [ Куб ]
[ Пятиугольники ]
[ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11

Может ли некоторое сечение куба быть правильным пятиугольником?

Прислать комментарий     Решение

Задача 110204

Темы:   [ Биссекторная плоскость ]
[ Гомотетия помогает решить задачу ]
[ Симметрия относительно плоскости ]
[ Параллельность прямых и плоскостей ]
Сложность: 4+
Классы: 10,11

В тетраэдре ABCD из вершины A опустили перпендикуляры AB' , AC' , AD' на плоскости, делящие двугранные углы при ребрах CD , BD , BC пополам. Докажите, что плоскость (B'C'D') параллельна плоскости (BCD) .
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 [Всего задач: 65]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .