ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В весеннем туре турнира городов 2000 года старшеклассникам страны N было предложено шесть задач. Каждую задачу решило ровно 1000 школьников, но никакие два школьника не решили вместе все шесть задач. Каково наименьшее возможное число старшеклассников страны N, принявших участие в весеннем туре? В прямоугольном листе бумаги сделали несколько непересекающихся круглых дыр. На дырявом листке отметили две точки, находящиеся на расстоянии d друг от друга. Докажите, что на дырявом листке можно нарисовать кривую длины меньше 1,6d, соединяющую данные точки. Сторона основания ABCD правильной призмы ABCDA1B1C1D1 равна 2a , боковое ребро – a . Рассматриваются отрезки с концами на диагонали AD1 грани AA1D1D и диагонали DB1 призмы, параллельные плоскости AA1B1B . а) Один из таких отрезков проведён через точку M диагонали AD1 , для которой AM:AD1 = 2:3 . Найдите его длину. б) Найдите наименьшую длину всех рассматриваемых отрезков. Дан произвольный треугольник ABC и точка X вне его. AM, BN, CQ — медианы треугольника ABC. Доказать, что площадь одного из треугольников XAM, XBN, XCQ равна сумме площадей двух других. Правильную четырёхугольную пирамиду PQRST с вершиной P пересекает плоскость, проходящая через основание M высоты PM , перпендикулярная грани SPT и параллельная ребру ST . Высота PM в два раза больше ребра ST . Найдите отношение площади получившегося сечения к площади основания пирамиды. Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что треугольник равнобедренный. а) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет треугольников?
Дана плоская замкнутая ломаная периметра 1. Доказать, что можно начертить круг
радиусом
В конусе расположены два одинаковых шара радиуса r , касающиеся основания конуса в точках, симметричных относительно центра основания. Каждый из шаров касается боковой поверхности конуса и другого шара. Найдите угол между образующей конуса и основанием, при которой объём конуса наименьший.
Трапеция KLMN с основаниями KN и LM вписана в окружность, центр которой лежит на основании KN. Диагональ KM трапеции равна 4, а боковая сторона KL равна 3. Найдите основание LM.
В график функции, симметричной относительно оси ординат, вписана "ёлочка" высотой 1. Известно, что "ветки" ёлочки составляют угол 450 с вертикалью. Найдите периметр ёлочки (т.е. сумму длин всех зеленых отрезков). |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 1663]
В равнобедренном треугольнике ABC длина основания AC равна
2
Бесконечный коридор ширины 1 поворачивает под прямым углом. Докажите, что можно подобрать проволоку так, чтобы расстояние между ее концами больше 4, и чтобы ее можно было протащить через этот коридор.
В график функции, симметричной относительно оси ординат, вписана "ёлочка" высотой 1. Известно, что "ветки" ёлочки составляют угол 450 с вертикалью. Найдите периметр ёлочки (т.е. сумму длин всех зеленых отрезков).
По стороне правильного треугольника катится окружность радиуса, равного его высоте. Докажите, что угловая величина дуги, высекаемой на окружности сторонами треугольника, всегда равна 600.
Дан угол в 30o. Постройте окружность радиуса 2,5, касающуюся одной стороны этого угла и имеющую центр на другой его стороне. Найдите расстояние от центра окружности до вершины угла.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 1663]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке