Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Дан угол в 30o. Постройте окружность радиуса 2,5, касающуюся одной стороны этого угла и имеющую центр на другой его стороне. Найдите расстояние от центра окружности до вершины угла.

Вниз   Решение


В прямоугольном листе бумаги сделали несколько непересекающихся круглых дыр. На дырявом листке отметили две точки, находящиеся на расстоянии d друг от друга. Докажите, что на дырявом листке можно нарисовать кривую длины меньше 1,6d, соединяющую данные точки.

ВверхВниз   Решение


Сторона основания ABCD правильной призмы ABCDA1B1C1D1 равна 2a , боковое ребро – a . Рассматриваются отрезки с концами на диагонали AD1 грани AA1D1D и диагонали DB1 призмы, параллельные плоскости AA1B1B . а) Один из таких отрезков проведён через точку M диагонали AD1 , для которой AM:AD1 = 2:3 . Найдите его длину. б) Найдите наименьшую длину всех рассматриваемых отрезков.

ВверхВниз   Решение


Дан произвольный треугольник ABC и точка X вне его. AM, BN, CQ — медианы треугольника ABC. Доказать, что площадь одного из треугольников XAM, XBN, XCQ равна сумме площадей двух других.

ВверхВниз   Решение


Правильную четырёхугольную пирамиду PQRST с вершиной P пересекает плоскость, проходящая через основание M высоты PM , перпендикулярная грани SPT и параллельная ребру ST . Высота PM в два раза больше ребра ST . Найдите отношение площади получившегося сечения к площади основания пирамиды.

ВверхВниз   Решение


Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что треугольник равнобедренный.

ВверхВниз   Решение


Дана плоская замкнутая ломаная периметра 1. Доказать, что можно начертить круг радиусом $ {\frac{1}{4}}$, покрывающий всю ломаную.

ВверхВниз   Решение


а) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет треугольников?
б) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет полного подграфа из четырёх вершин?

ВверхВниз   Решение


В конусе расположены два одинаковых шара радиуса r , касающиеся основания конуса в точках, симметричных относительно центра основания. Каждый из шаров касается боковой поверхности конуса и другого шара. Найдите угол между образующей конуса и основанием, при которой объём конуса наименьший.

ВверхВниз   Решение


Трапеция KLMN с основаниями KN и LM вписана в окружность, центр которой лежит на основании KN. Диагональ KM трапеции равна 4, а боковая сторона KL равна 3. Найдите основание LM.

ВверхВниз   Решение


В график функции, симметричной относительно оси ординат, вписана "ёлочка" высотой 1. Известно, что "ветки" ёлочки составляют угол 450 с вертикалью. Найдите периметр ёлочки (т.е. сумму длин всех зеленых отрезков).

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 1663]      



Задача 54431

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Перпендикуляр и наклонная ]
Сложность: 2+
Классы: 8,9

В равнобедренном треугольнике ABC длина основания AC равна 2$ \sqrt{7}$, длина боковой стороны равна 8. Точка K делит высоту BD треугольника в отношении 2:3, считая от точки B. Что больше: длина CK или длина AC?

Прислать комментарий     Решение


Задача 35612

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Метрические соотношения (прочее) ]
Сложность: 2+
Классы: 9,10

Бесконечный коридор ширины 1 поворачивает под прямым углом. Докажите, что можно подобрать проволоку так, чтобы расстояние между ее концами больше 4, и чтобы ее можно было протащить через этот коридор.
Прислать комментарий     Решение


Задача 35647

Тема:   [ Прямоугольные треугольники (прочее) ]
Сложность: 2+
Классы: 9,10

В график функции, симметричной относительно оси ординат, вписана "ёлочка" высотой 1. Известно, что "ветки" ёлочки составляют угол 450 с вертикалью. Найдите периметр ёлочки (т.е. сумму длин всех зеленых отрезков).
Прислать комментарий     Решение


Задача 35687

Темы:   [ Правильный (равносторонний) треугольник ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 2+
Классы: 8,9

По стороне правильного треугольника катится окружность радиуса, равного его высоте. Докажите, что угловая величина дуги, высекаемой на окружности сторонами треугольника, всегда равна 600.
Прислать комментарий     Решение


Задача 52394

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Признаки и свойства касательной ]
Сложность: 2+
Классы: 8,9

Дан угол в 30o. Постройте окружность радиуса 2,5, касающуюся одной стороны этого угла и имеющую центр на другой его стороне. Найдите расстояние от центра окружности до вершины угла.

Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 1663]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .