|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Высоты $AH$, $CH$ остроугольного треугольника $ABC$ пересекают внутреннюю биссектрису угла $B$ в точках $L_1$, $P_1$, а внешнюю в точках $L_2$, $P_2$. Докажите, что ортоцентры треугольников $HL_1P_1$, $HL_2P_2$ и вершина $B$ лежат на одной прямой. В клетках квадратной таблицы 10×10 расставлены числа от 1 до 100. Пусть S1, S2, ..., S10 – суммы чисел, стоящих в столбцах таблицы. |
Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 1235]
В клетках квадратной таблицы 10×10 расставлены числа от 1 до 100. Пусть S1, S2, ..., S10 – суммы чисел, стоящих в столбцах таблицы.
У Сережи и у Лены есть несколько шоколадок, каждая весом не более 100 граммов. Как бы они ни поделили эти шоколадки, у одного из них суммарный вес шоколадок не будет превосходить 100 граммов. Какой наибольший суммарный вес могут иметь все шоколадки?
Сумма двух сторон прямоугольника равна 7 см, а сумма трёх его сторон равна 9,5 см. Найдите периметр прямоугольника.
Докажите, что многочлен x12 – x9 + x4 – x + 1 при всех значениях x положителен.
Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 1235] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|