ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Две окружности касаются описанной окружности треугольника ABC в точке K;
кроме того, одна из этих окружностей касается стороны AB в точке M, а
другая касается стороны AC в точке N. Докажите, что центр вписанной
окружности треугольника ABC лежит на прямой MN.
Дано два тетраэдра A1A2A3A4 и B1B2B3B4. Рассмотрим шесть пар рёбер AiAj и BkBl, где (i, j, k, l) – перестановка чисел (1, 2, 3, 4) (например, A1A2 и B3B4). Известно, что во всех парах, кроме одной, рёбра перпендикулярны. Докажите, что в оставшейся паре рёбра тоже перпендикулярны. На дуге CD описанной окружности квадрата ABCD
взята точка P. Докажите, что
PA + PC = Среди всех треугольников, вписанных в данную окружность, найдите тот,
у которого максимальна сумма квадратов длин сторон.
Найдите геометрическое место точек, из которых данный отрезок виден под данным углом.
|
Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]
Найдите геометрическое место точек, из которых данный отрезок виден под данным углом.
а) На окружности фиксированы точки A и B, а
точки A1 и B1 движутся по той же окружности так, что величина
дуги A1B1 остается постоянной; M — точка пересечения
прямых AA1 и BB1. Найдите ГМТ M.
Найдите ГМТ X, лежащих внутри правильного
треугольника ABC и обладающих тем свойством, что
В четырёхугольнике ABCD длины сторон AB и BC равны 1, ∠B = 100°, ∠D = 130°. Найдите BD.
С помощью циркуля и линейки впишите в данную окружность прямоугольный треугольник, катет которого проходит через данную точку, если дан один из острых углов этого треугольника.
Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке