ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу в точке D так, что AD : BD = 1 : 3. Высота, опущенная из вершины C прямого угла на гипотенузу, равна 3. Найдите катет BC.

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 401]      



Задача 102433

Темы:   [ Диаметр, хорды и секущие ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Длина стороны BC треугольника ABC равна 12 см. Около треугольника описана окружность радиуса 10 см. Найдите длины сторон AB и AC треугольника, если известно, что радиус OA окружности делит сторону BC на два равных отрезка.

Прислать комментарий     Решение


Задача 102434

Темы:   [ Диаметр, хорды и секущие ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Длина стороны AB треугольника ABC равна 24 см. Около треугольника описана окружность радиуса 13 см. Найдите длины сторон AC и BC треугольника, если известно, что радиус OC окружности делит сторону AB на два равных отрезка.

Прислать комментарий     Решение


Задача 108049

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Построение треугольников по различным точкам ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

На окружности даны точки K и L. Постройте такой треугольник ABC, что KL является его средней линией, параллельной AB, и при этом точка C и точка пересечения медиан треугольника ABC лежат на данной окружности.

Прислать комментарий     Решение

Задача 115280

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Медиана, проведенная к гипотенузе ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Точка M – середина хорды AB. Хорда CD пересекает AB в точке M. На отрезке CD как на диаметре построена полуокружность. Точка E лежит на этой полуокружности, и ME – перпендикуляр к CD. Найдите угол AEB.

Прислать комментарий     Решение

Задача 52377

Темы:   [ Диаметр, основные свойства ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу в точке D так, что AD : BD = 1 : 3. Высота, опущенная из вершины C прямого угла на гипотенузу, равна 3. Найдите катет BC.

Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .