ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В окружность вписан четырёхугольник ABCD, причём AB является диаметром окружности. Диагонали AC и BD пересекаются в точке M. Известно, что  BC = 3,  CM = ¾,  а площадь треугольника ABC втрое больше площади треугольника ACD. Найдите AM.

   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 401]      



Задача 52637

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Диаметр, основные свойства ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
Сложность: 3
Классы: 8,9

Во вписанном четырёхугольнике ABCD диагональ AC перпендикулярна диагонали BD и делит её пополам. Найдите углы четырёхугольника, если $ \angle$BAD = $ \alpha$.

Прислать комментарий     Решение


Задача 52846

Темы:   [ Признаки и свойства касательной ]
[ Диаметр, основные свойства ]
Сложность: 3
Классы: 8,9

На одной стороне прямого угла с вершиной в точке O взяты две точки A и B, причем OA = a, OB = b. Найдите радиус окружности, проходящей через точки A и B и касающейся другой стороны угла.

Прислать комментарий     Решение


Задача 53722

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Диаметр, основные свойства ]
Сложность: 3
Классы: 8,9

Диагонали вписанного четырёхугольника взаимно перпендикулярны. Докажите, что расстояние от точки пересечения диагоналей до центра описанной окружности равно расстоянию между серединами диагоналей.

Прислать комментарий     Решение


Задача 52342

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Диаметр, основные свойства ]
Сложность: 3+
Классы: 8,9

Точка P удалена на расстояние, равное 7, от центра окружности, радиус которой равен 11. Через точку P проведена хорда, равная 18. Найдите отрезки, на которые делится хорда точкой P?

Прислать комментарий     Решение


Задача 52381

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательные подобные треугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

В окружность вписан четырёхугольник ABCD, причём AB является диаметром окружности. Диагонали AC и BD пересекаются в точке M. Известно, что  BC = 3,  CM = ¾,  а площадь треугольника ABC втрое больше площади треугольника ACD. Найдите AM.

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .