ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
В окружность радиуса R вписан шестиугольник ABCDEF. Известно, что
С помощью циркуля и линейки постройте треугольник ABC, если
даны его вершины A и B, прямая l, на которой лежит вершина
C, и разность углов
Точка D лежит на стороне BC равнобедренного треугольника ABC
(AB = CB), причём
CD =
Потроить треугольник по
Биссектриса угла $A$ треугольника $ABC$ при продолжении пересекает описанную около него окружность $\omega$ в точке $W$. Окружность $s$, построенная на отрезке $AH$ как на диаметре ($H$ – ортоцентр в треугольнике $ABC$), пересекает $\omega$ в точке $P$. Восстановите треугольник $ABC$, если остались точки $A$, $P$, $W$. На бесконечном листе клетчатой бумаги N клеток
окрашено в черный цвет. Докажите, что из этого листа
можно вырезать конечное число квадратов так, что будут
выполняться два условия: 1) все черные клетки лежат в вырезанных
квадратах; 2) в любом вырезанном квадрате K площадь черных клеток
составит не менее 1/5 и не более 4/5 площади K.
Число N записано в десятичной системе счисления N =
Найдите сумму квадратов расстояний от точки M, взятой на диаметре некоторой окружности, до концов любой из параллельных этому диаметру хорд, если радиус окружности равен R, а расстояние от точки M до центра окружности равно a.
За дядькой Черномором выстроились чередой бесконечное число богатырей разного роста. Докажите, что он может приказать части из них выйти из строя так, чтобы в строю осталось бесконечное число богатырей и все они стояли по росту (в порядке возрастания или убывания). Сформулируйте и докажите признак делимости на Точку внутри выпуклого четырёхугольника соединили со всеми вершинами и с четырьмя точками на сторонах (по одной на стороне). Четырёхугольник оказался разделён на восемь треугольников с одинаковыми радиусами описанных окружностей. Докажите, что исходный четырёхугольник вписанный. Четырёхугольник ABCD вписан в окружность, АС = а, BD = b, AB ⊥ CD. Найдите радиус окружности. Четырёхугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O. Найдите расстояние от точки O до стороны AB, если CD = a.
В треугольнике ABC известны стороны: AB = 6, BC = 4, AC = 8. Биссектриса угла C пересекает сторону AB в точке D. Через точки A, D и C проведена окружность, пересекающая сторону BC в точке E. Найдите площадь треугольника ADE.
|
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 449]
В прямоугольном треугольнике KLM проведён отрезок MD, соединяющий вершину
прямого угла с точкой D на гипотенузе KL так, что длины отрезков DL, DM
и DK различны и образуют в указанном порядке геометрическую прогрессию со
знаменателем
В прямоугольном треугольнике ABC проведён отрезок CK, соединяющий вершину прямого угла с точкой K на гипотенузе AB так, что длины отрезков BK, CK и AK различны и образуют в указанном порядке геометрическую прогрессию, причём CK = 2. Найдите радиус окружности, описанной около треугольника ABC, если AC = 3.
В треугольнике ABC известны стороны: AB = 6, BC = 4, AC = 8. Биссектриса угла C пересекает сторону AB в точке D. Через точки A, D и C проведена окружность, пересекающая сторону BC в точке E. Найдите площадь треугольника ADE.
В ромбе ABCD из вершины B на сторону AD опущен перпендикуляр
BE. Найдите углы ромба, если
2
Точка O — центр окружности, вписанной в равнобедренный
треугольник ABC (AB = BC). Прямая AO пересекает отрезок BC в
точке M. Найдите углы и площадь треугольника ABC, если AO = 3,
OM =
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 449]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке