Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

  Определение. Пусть  α = (k, j, i)  – набор целых неотрицательных чисел,  k ≥ j ≥ i.  Через Tα(x, y, z) будем обозначать симметрический многочлен от трёх переменных, который есть по определению сумма одночленов вида xaybzc по всем шести перестановкам  (a, b, c)  набора  (k, j, i).
  Аналогично определяются многочлены Tα для произвольного количества переменных/чисел в наборе α.
  Запишите через многочлены вида Tα неравенства
  а)  x4y + y4x ≥ x³y² + x²y³;
  б)  x³yz + y³xz + z³xy ≥ x²y²z + y²z²x + z²x²y.

Вниз   Решение


Докажите, что если сумма косинусов углов четырёхугольника равна нулю, то он — параллелограмм, трапеция или вписанный четырёхугольник.

ВверхВниз   Решение


От пирога, имеющего форму выпуклого пятиугольника, можно отрезать треугольный кусок по линии, пересекающей в точках, отличных от вершин, две соседние стороны; от оставшейся части пирога — следующий кусок (таким же образом) и т.д. В какие точки пирога можно воткнуть свечку, чтобы её нельзя было отрезать?

ВверхВниз   Решение


Можно ли расположить в пространстве пять сфер так, чтобы для каждой из сфер можно было провести через ее центр касательную плоскость к остальным четырем сферам? Сферы могут пересекаться и не обязаны иметь одинаковый радиус.

ВверхВниз   Решение


Докажите, что     тогда и только тогда, когда β можно получить из α проделав несколько (может быть один раз или ни одного) операции вида

(k,  j, i)   ↔   (k – 1,  j + 1, i),     (k,  j, i)   ↔   (k – 1, j, i + 1),     (k, j, i)   ↔ (k,  j – 1, i + 1).

(Эти операции можно представлять себе как сбрасывание одного кирпича вниз на диаграмме Юнга. Про диаграммы Юнга смотри здесь.)

ВверхВниз   Решение


Сумму цифр числа a обозначим через S(a). Доказать, что если  S(a) = S(2a),  то число a делится на 9.

ВверхВниз   Решение


В остроугольном треугольнике ABC угол A равен 60°. Докажите, что биссектриса одного из углов, образованных высотами, проведёнными из вершин B и C, проходит через центр описанной окружности этого треугольника.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 289]      



Задача 52492

Темы:   [ Вспомогательная окружность ]
[ Углы между биссектрисами ]
[ Вписанные и описанные окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Ромбы. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В остроугольном треугольнике ABC угол A равен 60°. Докажите, что биссектриса одного из углов, образованных высотами, проведёнными из вершин B и C, проходит через центр описанной окружности этого треугольника.

Прислать комментарий     Решение

Задача 53262

Темы:   [ Вспомогательная окружность ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

В равнобедренном треугольнике ABC (AB = BC) проведена высота CD . Угол BAC равен α . Радиус окружности, проходящей через точки A , C и D , равен R . Найдите площадь треугольника ABC .
Прислать комментарий     Решение


Задача 53627

Темы:   [ Вспомогательная окружность ]
[ Диаметр, основные свойства ]
Сложность: 3
Классы: 8,9

Две прямые пересекаются в точке A под углом, не равным 90o ; B и C — проекции точки M на эти прямые. Найдите угол между прямой BC и прямой, проходящей через середины отрезков AM и BC .
Прислать комментарий     Решение


Задача 108022

Темы:   [ Вспомогательная окружность ]
[ Правильный (равносторонний) треугольник ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3
Классы: 8,9

В остроугольном треугольнике соединены основания высот. Оказалось, что в полученном треугольнике две стороны параллельны сторонам исходного треугольника. Докажите, что третья сторона также параллельна одной из сторон исходного треугольника.

Прислать комментарий     Решение

Задача 108037

Темы:   [ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9

В окружности проведены две пересекающиеся хорды AB и CD . На отрезке AB взяли точку M так, что AM=AC , а на отрезке CD – точку N так, что DN=DB . Докажите, что если точки M и N не совпадают, то прямая MN параллельна прямой AD .
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .